Edit model card

🧩 Configuration

#slices:
#  - sources:
#      - model: liminerity/M7-7b
#        layer_range: [0, 32]
#      - model: AurelPx/Percival_01-7b-slerp
#        layer_range: [0, 32]
#merge_method: slerp
#base_model: liminerity/M7-7b
#parameters:
#  t:
#    - filter: self_attn
#      value: [0.6606117722434863, 0.01708760797547526, 0.8948656675765086, 0.47128075561315386, 0.5692245310177902]
#    - filter: mlp
#      value: [0.33938822775651367, 0.9829123920245247, 0.5287192443868461, 0.5287192443868461, 0.43077546898220975]
#    - value: 0.14995989969007373
#dtype: bfloat16
#random_seed: 0

#slices:
#  - sources:
#      - model: psmathur/orca_mini_v3_13b
#        layer_range: [0, 40]
#      - model: garage-bAInd/Platypus2-7b 
#        layer_range: [0, 32]
#merge_method: slerp
#base_model: psmathur/orca_mini_v3_13b
#parameters:
#  t:
#    - filter: self_attn
#      value: [0.6606117722434863, 0.01708760797547526, 0.8948656675765086, 0.47128075561315386, 0.5692245310177902]
#    - filter: mlp
#      value: [0.33938822775651367, 0.9829123920245247, 0.10513433242349135, 0.5287192443868461, 0.43077546898220975]
#    - value: 0.14995989969007373
#dtype: float16
#random_seed: 0

#slices:
#  - sources:
#    - model: psmathur/orca_mini_v3_13b
#      parameters:
#        density: [1, 0.7, 0.1] # density gradient
#        weight: 1.0
#    - model: garage-bAInd/Platypus2-13B
#      parameters:
#        density: 0.5
#        weight: [0, 0.3, 0.7, 1] # weight gradient
#    - model: WizardLM/WizardMath-13B-V1.0
#      parameters:
#        density: 0.33
#        weight:
#          - filter: mlp
#            value: 0.5
#          - value: 0
#merge_method: ties
#base_model: TheBloke/Llama-2-13B-fp16
#parameters:
#  normalize: true
#  int8_mask: true
#dtype: float16
#random_seed: 0

base_model: mlabonne/AlphaMonarch-7B
experts:
  - source_model: mlabonne/AlphaMonarch-7B
    positive_prompts:
    - "chat"
    - "assistant"
    - "tell me"
    - "explain"
    - "I want"
  - source_model: TheBloke/Llama-2-13B-fp16
    positive_prompts:
    - "reason"
    - "math"
    - "mathematics"
    - "solve"
    - "count"
    ```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "EthanLiu1991/Merged_model_MoE"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
6
Safetensors
Model size
14B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.