Elu-dan's picture
Training complete
aecf77d verified
metadata
library_name: transformers
license: mit
base_model: Davlan/afro-xlmr-base
tags:
  - generated_from_trainer
datasets:
  - masakhaner
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: afro-xlmr-base-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: masakhaner
          type: masakhaner
          config: amh
          split: validation
          args: amh
        metrics:
          - name: Precision
            type: precision
            value: 0.6377952755905512
          - name: Recall
            type: recall
            value: 0.7408536585365854
          - name: F1
            type: f1
            value: 0.6854724964739068
          - name: Accuracy
            type: accuracy
            value: 0.9539116048215552

afro-xlmr-base-finetuned-ner

This model is a fine-tuned version of Davlan/afro-xlmr-base on the masakhaner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1729
  • Precision: 0.6378
  • Recall: 0.7409
  • F1: 0.6855
  • Accuracy: 0.9539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 219 0.2089 0.55 0.6707 0.6044 0.9310
No log 2.0 438 0.1602 0.6305 0.7439 0.6825 0.9536
0.2795 3.0 657 0.1729 0.6378 0.7409 0.6855 0.9539

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0