llama2-7b-int4-dolly-15k-hindi-flash-attention2-w-packing
This model is a fine-tuned version of NousResearch/Llama-2-7b-hf on the kpriyanshu256/databricks-dolly-15k-hi dataset. It achieves the following results on the evaluation set:
- Loss: 0.5537
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 6
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.6986 | 0.16 | 100 | 0.6539 |
0.6441 | 0.31 | 200 | 0.6297 |
0.6231 | 0.47 | 300 | 0.6146 |
0.6066 | 0.62 | 400 | 0.6020 |
0.5922 | 0.78 | 500 | 0.5930 |
0.6023 | 0.94 | 600 | 0.5847 |
0.5618 | 1.09 | 700 | 0.5792 |
0.5496 | 1.25 | 800 | 0.5742 |
0.5428 | 1.41 | 900 | 0.5699 |
0.5336 | 1.56 | 1000 | 0.5643 |
0.5331 | 1.72 | 1100 | 0.5605 |
0.5255 | 1.88 | 1200 | 0.5574 |
0.5155 | 2.03 | 1300 | 0.5581 |
0.4851 | 2.19 | 1400 | 0.5565 |
0.4831 | 2.34 | 1500 | 0.5563 |
0.489 | 2.5 | 1600 | 0.5545 |
0.4901 | 2.66 | 1700 | 0.5540 |
0.4863 | 2.81 | 1800 | 0.5537 |
0.479 | 2.97 | 1900 | 0.5537 |
Framework versions
- PEFT 0.7.2.dev0
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0
- Downloads last month
- 7
Model tree for DrishtiSharma/llama2-7b-int4-dolly-15k-hindi-flash-attention2-w-packing
Base model
NousResearch/Llama-2-7b-hf