File size: 5,107 Bytes
93ecf77 a216811 93ecf77 97c6bc2 beff49e eb2cdb5 eaf7f8f 97c6bc2 93ecf77 e0503b7 93ecf77 b7513b8 93ecf77 97c6bc2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
---
language:
- en
license: cc-by-nc-sa-4.0
library_name: transformers
tags:
- moe
- merge
- MoE
pipeline_tag: text-generation
model-index:
- name: SOLARC-MOE-10.7Bx6
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 70.9
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.4
name: normalized accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.36
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 71.85
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.66
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.9
name: accuracy
source:
url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
name: Open LLM Leaderboard
---
**The license is `cc-by-nc-sa-4.0`.**
# **🐻❄️SOLARC-MOE-10.7Bx6🐻❄️**
![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG)
## Model Details
**Model Developers** Seungyoo Lee(DopeorNope)
I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea.
**Input** Models input text only.
**Output** Models generate text only.
**Model Architecture**
SOLARC-MOE-10.7Bx6 is an auto-regressive language model based on the SOLAR architecture.
---
## **Base Model**
[kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co./kyujinpy/Sakura-SOLAR-Instruct)
[Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co./Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct)
[VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co./VAGOsolutions/SauerkrautLM-SOLAR-Instruct)
[fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./fblgit/UNA-SOLAR-10.7B-Instruct-v1.0)
[jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co./jeonsworld/CarbonVillain-en-10.7B-v1)
## **Implemented Method**
I have built a model using the Mixture of Experts (MOE) approach, utilizing each of these models as the base.
I wanted to test if it was possible to compile with a non-power of 2, like with 6
---
# Implementation Code
## Load model
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "DopeorNope/SOLARC-MOE-10.7Bx6"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float32,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_DopeorNope__SOLARC-MOE-10.7Bx6)
| Metric |Value|
|---------------------------------|----:|
|Avg. |74.35|
|AI2 Reasoning Challenge (25-Shot)|70.90|
|HellaSwag (10-Shot) |88.40|
|MMLU (5-Shot) |66.36|
|TruthfulQA (0-shot) |71.85|
|Winogrande (5-shot) |83.66|
|GSM8k (5-shot) |64.90|
|