File size: 5,107 Bytes
93ecf77
 
a216811
93ecf77
97c6bc2
beff49e
 
eb2cdb5
eaf7f8f
97c6bc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93ecf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0503b7
93ecf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7513b8
93ecf77
 
 
 
 
 
97c6bc2
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
language:
- en
license: cc-by-nc-sa-4.0
library_name: transformers
tags:
- moe
- merge
- MoE
pipeline_tag: text-generation
model-index:
- name: SOLARC-MOE-10.7Bx6
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 70.9
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 88.4
      name: normalized accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 66.36
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 71.85
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 83.66
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.9
      name: accuracy
    source:
      url: https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=DopeorNope/SOLARC-MOE-10.7Bx6
      name: Open LLM Leaderboard
---
**The license is `cc-by-nc-sa-4.0`.**  
  
# **🐻‍❄️SOLARC-MOE-10.7Bx6🐻‍❄️**  
![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG)  


## Model Details

**Model Developers** Seungyoo Lee(DopeorNope)

I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea.

**Input** Models input text only.

**Output** Models generate text only.

**Model Architecture**  
SOLARC-MOE-10.7Bx6 is an auto-regressive language model based on the SOLAR architecture.

---

## **Base Model**  

[kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co./kyujinpy/Sakura-SOLAR-Instruct)   

[Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co./Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct)   

[VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co./VAGOsolutions/SauerkrautLM-SOLAR-Instruct)   

[fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./fblgit/UNA-SOLAR-10.7B-Instruct-v1.0)   

[jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co./jeonsworld/CarbonVillain-en-10.7B-v1)


## **Implemented Method**

I have built a model using the Mixture of Experts (MOE) approach, utilizing each of these models as the base.

I wanted to test if it was possible to compile with a non-power of 2, like with 6

---
  
# Implementation Code


## Load model
```python

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "DopeorNope/SOLARC-MOE-10.7Bx6"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float32,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```


---
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/details_DopeorNope__SOLARC-MOE-10.7Bx6)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |74.35|
|AI2 Reasoning Challenge (25-Shot)|70.90|
|HellaSwag (10-Shot)              |88.40|
|MMLU (5-Shot)                    |66.36|
|TruthfulQA (0-shot)              |71.85|
|Winogrande (5-shot)              |83.66|
|GSM8k (5-shot)                   |64.90|