DopeorNope commited on
Commit
93ecf77
·
1 Parent(s): 6a4dcb9

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - ko
4
+ library_name: transformers
5
+ pipeline_tag: text-generation
6
+ license: cc-by-nc-sa-4.0
7
+ ---
8
+ **The license is `cc-by-nc-sa-4.0`.**
9
+
10
+ # **🐻‍❄️SOLARC-MOE-10.7Bx6🐻‍❄️**
11
+ ![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG)
12
+
13
+
14
+ ## Model Details
15
+
16
+ **Model Developers** Seungyoo Lee(DopeorNope)
17
+
18
+ I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea.
19
+
20
+ **Input** Models input text only.
21
+
22
+ **Output** Models generate text only.
23
+
24
+ **Model Architecture**
25
+ SOLARC-MOE-10.7Bx6 is an auto-regressive language model based on the SOLAR architecture.
26
+
27
+ ---
28
+
29
+ ## **Base Model**
30
+
31
+ [kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
32
+
33
+ [Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co/Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct)
34
+
35
+ [VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct)
36
+
37
+ [fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0)
38
+
39
+ [jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1)
40
+
41
+
42
+ ## **Implemented Method**
43
+
44
+ I have built a model using the Mixture of Experts (MOE) approach, utilizing each of these models as the base.
45
+
46
+ I wanted to test if it was possible with a non-power of 2, like with 6
47
+
48
+ ---
49
+
50
+ # Implementation Code
51
+
52
+
53
+ ## Load model
54
+ ```python
55
+
56
+ from transformers import AutoModelForCausalLM, AutoTokenizer
57
+ import torch
58
+
59
+ repo = "DopeorNope/SOLARC-MOE-10.7Bx6"
60
+ OpenOrca = AutoModelForCausalLM.from_pretrained(
61
+ repo,
62
+ return_dict=True,
63
+ torch_dtype=torch.float16,
64
+ device_map='auto'
65
+ )
66
+ OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
67
+ ```
68
+
69
+
70
+ ---