DopeorNope
commited on
Commit
·
93ecf77
1
Parent(s):
6a4dcb9
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
library_name: transformers
|
5 |
+
pipeline_tag: text-generation
|
6 |
+
license: cc-by-nc-sa-4.0
|
7 |
+
---
|
8 |
+
**The license is `cc-by-nc-sa-4.0`.**
|
9 |
+
|
10 |
+
# **🐻❄️SOLARC-MOE-10.7Bx6🐻❄️**
|
11 |
+
![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG)
|
12 |
+
|
13 |
+
|
14 |
+
## Model Details
|
15 |
+
|
16 |
+
**Model Developers** Seungyoo Lee(DopeorNope)
|
17 |
+
|
18 |
+
I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea.
|
19 |
+
|
20 |
+
**Input** Models input text only.
|
21 |
+
|
22 |
+
**Output** Models generate text only.
|
23 |
+
|
24 |
+
**Model Architecture**
|
25 |
+
SOLARC-MOE-10.7Bx6 is an auto-regressive language model based on the SOLAR architecture.
|
26 |
+
|
27 |
+
---
|
28 |
+
|
29 |
+
## **Base Model**
|
30 |
+
|
31 |
+
[kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co/kyujinpy/Sakura-SOLAR-Instruct)
|
32 |
+
|
33 |
+
[Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co/Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct)
|
34 |
+
|
35 |
+
[VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co/VAGOsolutions/SauerkrautLM-SOLAR-Instruct)
|
36 |
+
|
37 |
+
[fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/fblgit/UNA-SOLAR-10.7B-Instruct-v1.0)
|
38 |
+
|
39 |
+
[jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co/jeonsworld/CarbonVillain-en-10.7B-v1)
|
40 |
+
|
41 |
+
|
42 |
+
## **Implemented Method**
|
43 |
+
|
44 |
+
I have built a model using the Mixture of Experts (MOE) approach, utilizing each of these models as the base.
|
45 |
+
|
46 |
+
I wanted to test if it was possible with a non-power of 2, like with 6
|
47 |
+
|
48 |
+
---
|
49 |
+
|
50 |
+
# Implementation Code
|
51 |
+
|
52 |
+
|
53 |
+
## Load model
|
54 |
+
```python
|
55 |
+
|
56 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
57 |
+
import torch
|
58 |
+
|
59 |
+
repo = "DopeorNope/SOLARC-MOE-10.7Bx6"
|
60 |
+
OpenOrca = AutoModelForCausalLM.from_pretrained(
|
61 |
+
repo,
|
62 |
+
return_dict=True,
|
63 |
+
torch_dtype=torch.float16,
|
64 |
+
device_map='auto'
|
65 |
+
)
|
66 |
+
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
|
67 |
+
```
|
68 |
+
|
69 |
+
|
70 |
+
---
|