File size: 1,806 Bytes
93ecf77
 
a216811
93ecf77
 
 
beff49e
 
eb2cdb5
eaf7f8f
93ecf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0503b7
93ecf77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7513b8
93ecf77
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
language:
- en
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
tags:
- moe
- merge
- MoE
---
**The license is `cc-by-nc-sa-4.0`.**  
  
# **🐻‍❄️SOLARC-MOE-10.7Bx6🐻‍❄️**  
![img](https://drive.google.com/uc?export=view&id=1_Qa2TfLMw3WeJ23dHkrP1Xln_RNt1jqG)  


## Model Details

**Model Developers** Seungyoo Lee(DopeorNope)

I am in charge of Large Language Models (LLMs) at Markr AI team in South Korea.

**Input** Models input text only.

**Output** Models generate text only.

**Model Architecture**  
SOLARC-MOE-10.7Bx6 is an auto-regressive language model based on the SOLAR architecture.

---

## **Base Model**  

[kyujinpy/Sakura-SOLAR-Instruct](https://huggingface.co./kyujinpy/Sakura-SOLAR-Instruct)   

[Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct](https://huggingface.co./Weyaxi/SauerkrautLM-UNA-SOLAR-Instruct)   

[VAGOsolutions/SauerkrautLM-SOLAR-Instruct](https://huggingface.co./VAGOsolutions/SauerkrautLM-SOLAR-Instruct)   

[fblgit/UNA-SOLAR-10.7B-Instruct-v1.0](https://huggingface.co./fblgit/UNA-SOLAR-10.7B-Instruct-v1.0)   

[jeonsworld/CarbonVillain-en-10.7B-v1](https://huggingface.co./jeonsworld/CarbonVillain-en-10.7B-v1)


## **Implemented Method**

I have built a model using the Mixture of Experts (MOE) approach, utilizing each of these models as the base.

I wanted to test if it was possible to compile with a non-power of 2, like with 6

---
  
# Implementation Code


## Load model
```python

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "DopeorNope/SOLARC-MOE-10.7Bx6"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float32,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```


---