Sentiment Analysis Model

Overview

This repository contains a sentiment analysis model trained using scikit-learn for predicting sentiment from text inputs. The model leverages TF-IDF vectorization for text representation and a machine learning classifier for sentiment classification.

Model Details

  • Model Name: Sentiment Analysis Model
  • Framework: scikit-learn
  • Model Type: TF-IDF Vectorization + Machine Learning Classifier
  • Architecture: Linear SVM Classifier
  • Input: Text
  • Output: Sentiment Label (Positive/Negative)
  • Performance: Achieves 93% accuracy on test dataset

Download the Vectorizer model first and load the model :

Usage :

from huggingface_hub import hf_hub_download
import joblib
from sklearn.preprocessing import LabelEncoder

# Download and load the sentiment analysis model from Hugging Face Model Hub
model = joblib.load(hf_hub_download("DineshKumar1329/Sentiment_Analysis", "sklearn_model.joblib"))

# Load the TF-IDF vectorizer
tfidf_vectorizer = joblib.load(hf_hub_download("DineshKumar1329/Sentiment_Analysis", "vectorizer_model.joblib"))

def clean_text(text):
    return text.lower()

def predict_sentiment(user_input):
    """Predicts sentiment for a given user input."""
    cleaned_text = clean_text(user_input)
    input_matrix = tfidf_vectorizer.transform([cleaned_text])
    prediction = model.predict(input_matrix)[0]

    if isinstance(model.classes_, LabelEncoder):
        prediction = model.classes_.inverse_transform([prediction])[0]

    return prediction

# Get user input
user_input = input("Enter a sentence: ")

# Predict sentiment
predicted_sentiment = predict_sentiment(user_input)

# Output the prediction
print(f"Predicted Sentiment: {predicted_sentiment}")
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.