Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6098
  • Accuracy: {'accuracy': 0.37777777777777777}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 405 2.0008 {'accuracy': 0.37037037037037035}
2.0177 2.0 810 2.0349 {'accuracy': 0.3802469135802469}
1.8336 3.0 1215 2.0526 {'accuracy': 0.35802469135802467}
1.7547 4.0 1620 2.1418 {'accuracy': 0.33827160493827163}
1.5832 5.0 2025 2.2398 {'accuracy': 0.36790123456790125}
1.5832 6.0 2430 2.2712 {'accuracy': 0.34814814814814815}
1.4297 7.0 2835 2.3660 {'accuracy': 0.3530864197530864}
1.2579 8.0 3240 2.4898 {'accuracy': 0.36790123456790125}
1.1612 9.0 3645 2.5870 {'accuracy': 0.35802469135802467}
0.9591 10.0 4050 2.6098 {'accuracy': 0.37777777777777777}

Framework versions

  • PEFT 0.10.0
  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Dai35106/distilbert-base-uncased-lora-text-classification

Adapter
(191)
this model