v4_llama_lora

This model is a fine-tuned version of Daewon0808/prm800k_llama_fulltune on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1835
  • Prm accuracy: 0.9216
  • Prm precision: 0.9710
  • Prm recall: 0.9178
  • Prm specificty: 0.9310
  • Prm npv: 0.8182
  • Prm f1: 0.9437
  • Prm f1 neg: 0.8710
  • Prm f1 auc: 0.9244
  • Prm f1 auc (fixed): 0.9870

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 908932403
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Prm accuracy Prm precision Prm recall Prm specificty Prm npv Prm f1 Prm f1 neg Prm f1 auc Prm f1 auc (fixed)
No log 0 0 0.2324 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9752
0.3644 0.0113 5 0.2326 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9745
0.4155 0.0225 10 0.2321 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9761
0.3621 0.0338 15 0.2313 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9764
0.3158 0.0450 20 0.2311 0.9118 0.9571 0.9178 0.8966 0.8125 0.9371 0.8525 0.9072 0.9787
0.2875 0.0563 25 0.2320 0.8824 0.9552 0.8767 0.8966 0.7429 0.9143 0.8125 0.8866 0.9828
0.3092 0.0675 30 0.2270 0.8922 0.9697 0.8767 0.9310 0.75 0.9209 0.8308 0.9039 0.9854
0.2707 0.0788 35 0.2590 0.8824 0.9692 0.8630 0.9310 0.7297 0.9130 0.8182 0.8970 0.9823
0.2569 0.0900 40 0.2061 0.9216 0.9577 0.9315 0.8966 0.8387 0.9444 0.8667 0.9140 0.9846
0.2094 0.1013 45 0.2621 0.8529 0.9833 0.8082 0.9655 0.6667 0.8872 0.7887 0.8869 0.9842
0.2567 0.1125 50 0.2013 0.8922 0.9559 0.8904 0.8966 0.7647 0.9220 0.8254 0.8935 0.9821
0.2316 0.1238 55 0.2282 0.8922 0.9844 0.8630 0.9655 0.7368 0.9197 0.8358 0.9143 0.9846
0.1892 0.1350 60 0.1978 0.8922 0.9697 0.8767 0.9310 0.75 0.9209 0.8308 0.9039 0.9839
0.2541 0.1463 65 0.2150 0.8824 0.9692 0.8630 0.9310 0.7297 0.9130 0.8182 0.8970 0.9830
0.1987 0.1575 70 0.2332 0.8824 0.9692 0.8630 0.9310 0.7297 0.9130 0.8182 0.8970 0.9785
0.1965 0.1688 75 0.2106 0.8824 0.9692 0.8630 0.9310 0.7297 0.9130 0.8182 0.8970 0.9839
0.2652 0.1800 80 0.1784 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9846
0.1822 0.1913 85 0.2263 0.8627 0.9683 0.8356 0.9310 0.6923 0.8971 0.7941 0.8833 0.9851
0.2278 0.2025 90 0.1838 0.9118 0.9444 0.9315 0.8621 0.8333 0.9379 0.8475 0.8968 0.9849
0.2312 0.2138 95 0.2618 0.8529 0.9677 0.8219 0.9310 0.675 0.8889 0.7826 0.8765 0.9842
0.2253 0.2250 100 0.2169 0.9020 0.9437 0.9178 0.8621 0.8065 0.9306 0.8333 0.8899 0.9804
0.2599 0.2363 105 0.2673 0.8529 0.9677 0.8219 0.9310 0.675 0.8889 0.7826 0.8765 0.9858
0.2003 0.2475 110 0.2062 0.9118 0.9571 0.9178 0.8966 0.8125 0.9371 0.8525 0.9072 0.9875
0.2161 0.2588 115 0.1936 0.9118 0.9571 0.9178 0.8966 0.8125 0.9371 0.8525 0.9072 0.9887
0.184 0.2700 120 0.2195 0.9118 0.9848 0.8904 0.9655 0.7778 0.9353 0.8615 0.9280 0.9875
0.2144 0.2813 125 0.1807 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9868
0.2033 0.2925 130 0.2090 0.8922 0.9697 0.8767 0.9310 0.75 0.9209 0.8308 0.9039 0.9856
0.1829 0.3038 135 0.2103 0.8824 0.9552 0.8767 0.8966 0.7429 0.9143 0.8125 0.8866 0.9804
0.1789 0.3150 140 0.2007 0.8922 0.9429 0.9041 0.8621 0.7812 0.9231 0.8197 0.8831 0.9780
0.2022 0.3263 145 0.2330 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9837
0.1567 0.3376 150 0.2110 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9849
0.2176 0.3488 155 0.2058 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9844
0.1977 0.3601 160 0.2251 0.9020 0.9846 0.8767 0.9655 0.7568 0.9275 0.8485 0.9211 0.9851
0.1499 0.3713 165 0.1884 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9849
0.1863 0.3826 170 0.1959 0.9020 0.9701 0.8904 0.9310 0.7714 0.9286 0.8438 0.9107 0.9854
0.1885 0.3938 175 0.1797 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9870
0.2021 0.4051 180 0.2044 0.8922 0.9697 0.8767 0.9310 0.75 0.9209 0.8308 0.9039 0.9887
0.2046 0.4163 185 0.1975 0.8922 0.9697 0.8767 0.9310 0.75 0.9209 0.8308 0.9039 0.9887
0.1873 0.4276 190 0.1884 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9872
0.159 0.4388 195 0.2089 0.9020 0.9701 0.8904 0.9310 0.7714 0.9286 0.8438 0.9107 0.9858
0.1659 0.4501 200 0.2153 0.9020 0.9701 0.8904 0.9310 0.7714 0.9286 0.8438 0.9107 0.9858
0.1817 0.4613 205 0.2348 0.8725 0.9688 0.8493 0.9310 0.7105 0.9051 0.8060 0.8902 0.9849
0.1905 0.4726 210 0.2168 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9846
0.1836 0.4838 215 0.1996 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9830
0.1858 0.4951 220 0.2070 0.9020 0.9701 0.8904 0.9310 0.7714 0.9286 0.8438 0.9107 0.9839
0.1848 0.5063 225 0.2011 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9818
0.1811 0.5176 230 0.2117 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9802
0.2245 0.5288 235 0.2120 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9821
0.1777 0.5401 240 0.2104 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9846
0.1734 0.5513 245 0.2032 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9842
0.2164 0.5626 250 0.1971 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9825
0.2144 0.5738 255 0.2201 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9846
0.1975 0.5851 260 0.2109 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9844
0.2156 0.5963 265 0.2031 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9846
0.1782 0.6076 270 0.1987 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9854
0.1407 0.6188 275 0.2158 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9844
0.217 0.6301 280 0.2018 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9839
0.1692 0.6414 285 0.1782 0.9314 0.9714 0.9315 0.9310 0.8438 0.9510 0.8852 0.9313 0.9839
0.205 0.6526 290 0.2072 0.8922 0.9697 0.8767 0.9310 0.75 0.9209 0.8308 0.9039 0.9872
0.202 0.6639 295 0.2026 0.9020 0.9701 0.8904 0.9310 0.7714 0.9286 0.8438 0.9107 0.9887
0.2301 0.6751 300 0.1639 0.9314 0.9714 0.9315 0.9310 0.8438 0.9510 0.8852 0.9313 0.9882
0.191 0.6864 305 0.1622 0.9314 0.9714 0.9315 0.9310 0.8438 0.9510 0.8852 0.9313 0.9880
0.1106 0.6976 310 0.1938 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9870
0.1775 0.7089 315 0.2062 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9872
0.1925 0.7201 320 0.2050 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9863
0.1682 0.7314 325 0.1887 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9861
0.2101 0.7426 330 0.1903 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9856
0.1981 0.7539 335 0.1901 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9856
0.1825 0.7651 340 0.2022 0.9118 0.9706 0.9041 0.9310 0.7941 0.9362 0.8571 0.9176 0.9858
0.1738 0.7764 345 0.1987 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9868
0.201 0.7876 350 0.1846 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9854
0.1731 0.7989 355 0.1802 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9870
0.1312 0.8101 360 0.1851 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9875
0.1875 0.8214 365 0.1947 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9877
0.1893 0.8326 370 0.1997 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9877
0.2138 0.8439 375 0.2016 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9877
0.1851 0.8551 380 0.1967 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9875
0.1925 0.8664 385 0.1896 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9872
0.1852 0.8776 390 0.1849 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9872
0.1777 0.8889 395 0.1820 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9872
0.1501 0.9001 400 0.1812 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9872
0.1285 0.9114 405 0.1820 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9868
0.1392 0.9226 410 0.1804 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9868
0.1671 0.9339 415 0.1811 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9872
0.1544 0.9451 420 0.1828 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9875
0.2063 0.9564 425 0.1831 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9870
0.199 0.9677 430 0.1821 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9875
0.1551 0.9789 435 0.1846 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9872
0.1838 0.9902 440 0.1835 0.9216 0.9710 0.9178 0.9310 0.8182 0.9437 0.8710 0.9244 0.9870

Framework versions

  • PEFT 0.12.0
  • Transformers 4.46.0
  • Pytorch 2.4.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.20.1
Downloads last month
16
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Daewon0808/v4_llama_lora