Edit model card

DMetaSoul/sbert-chinese-qmc-finance-v1-distill

此模型是之前开源金融问题匹配模型的蒸馏轻量化版本(仅4层 BERT),适用于金融领域的问题匹配场景,比如:

  • 8千日利息400元? VS 10000元日利息多少钱
  • 提前还款是按全额计息 VS 还款扣款不成功怎么还款?
  • 为什么我借钱交易失败 VS 刚申请的借款为什么会失败

离线训练好的大模型如果直接用于线上推理,对计算资源有苛刻的需求,而且难以满足业务环境对延迟、吞吐量等性能指标的要求,这里我们使用蒸馏手段来把大模型轻量化。从 12 层 BERT 蒸馏为 4 层后,模型参数量缩小到 44%,大概 latency 减半、throughput 翻倍、精度下降 5% 左右(具体结果详见下文评估小节)。

Usage

1. Sentence-Transformers

通过 sentence-transformers 框架来使用该模型,首先进行安装:

pip install -U sentence-transformers

然后使用下面的代码来载入该模型并进行文本表征向量的提取:

from sentence_transformers import SentenceTransformer
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]

model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')
embeddings = model.encode(sentences)
print(embeddings)

2. HuggingFace Transformers

如果不想使用 sentence-transformers 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1-distill')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation

这里主要跟蒸馏前对应的 teacher 模型作了对比:

性能:

Teacher Student Gap
Model BERT-12-layers (102M) BERT-4-layers (45M) 0.44x
Cost 23s 12s -47%
Latency 38ms 20ms -47%
Throughput 418 sentence/s 791 sentence/s 1.9x

精度:

csts_dev csts_test afqmc lcqmc bqcorpus pawsx xiaobu Avg
Teacher 77.40% 74.55% 36.00% 75.75% 73.24% 11.58% 54.75% 57.61%
Student 75.02% 71.99% 32.40% 67.06% 66.35% 7.57% 49.26% 52.80%
Gap (abs.) - - - - - - - -4.81%

基于1万条数据测试,GPU设备是V100,batch_size=16,max_seq_len=256

Citing & Authors

E-mail: [email protected]

Downloads last month
69
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.