Model Description
This model was fine-tuned on over 24 hours of transcribed upper sorbian speech to aid future research, conservation and revitalisation of the language.
Training Data
- Source: Stiftung für das sorbische Volk / Załožba za serbski lud (https://stiftung.sorben.com/)
- Volume: 1493 Minutes, 10% Validation Set, 10% Test Set
Training Details
- Hyperparameters:
- Batch size: 64
- Learning rate: 3e-6, linear decay
- Optimizer: AdamW
- Warmup: 1000 steps
- Additional Techniques: BF16 training, initial 15 layers frozen
Performance
Metrics
- Word Error Rate: 5.7
Usage
Example Code
To use the model, follow this example code:
import torch
import torchaudio
from transformers import WhisperProcessor, WhisperForConditionalGeneration
# Load the model and processor
model_name = "DILHTWD/whisper-large-v3-hsb"
processor_name = "openai/whisper-large-v3"
processor = WhisperProcessor.from_pretrained(processor_name)
model = WhisperForConditionalGeneration.from_pretrained(model_name)
# Load and preprocess the audio
audio, sample_rate = torchaudio.load("test.mp3")
if sample_rate != 16000:
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio)
input_features = processor(audio.squeeze().numpy(), sampling_rate=16000, return_tensors="pt").input_features
# Generate transcription
with torch.no_grad():
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
# Print the transcription
print("Transcription:", transcription)
Model Details
- Model Name: DILHTWD/whisper-large-v3-hsb
- Publisher: Data Intelligence Lab, Hochschule für Technik und Wirtschaft Dresden
- Model Version: 1.0.0
- Model Date: 2024-11-11
- License: AGPL-3.0
- Architecture: Whisper Large v3
- Task: Automatic Speech Recognition
- Downloads last month
- 16
Unable to determine this model's library. Check the
docs
.
Model tree for DILHTWD/whisper-large-v3-hsb
Base model
openai/whisper-large-v3