Token Classification
Transformers
Safetensors
French
deberta-v2
Inference Endpoints

NERmemBERTa-3entities

Model Description

We present NERmemBERTa-3entities, which is a CamemBERTa v2 base fine-tuned for the Name Entity Recognition task for the French language on five French NER datasets for 3 entities (LOC, PER, ORG).
All these datasets were concatenated and cleaned into a single dataset that we called frenchNER_3entities.
This represents a total of over 420,264 rows, of which 346,071 are for training, 32,951 for validation and 41,242 for testing.
Our methodology is described in a blog post available in English or French.

Evaluation results

frenchNER_3entities

For space reasons, we show only the F1 of the different models. You can see the full results below the table.


Model

Parameters

Context

PER

LOC

ORG

Jean-Baptiste/camembert-ner

110M

512 tokens

0.941

0.883

0.658

cmarkea/distilcamembert-base-ner

67.5M

512 tokens

0.942

0.882

0.647

NERmembert-base-4entities

110M

512 tokens

0.951

0.894

0.671

NERmembert-large-4entities

336M

512 tokens

0.958

0.901

0.685

NERmembert-base-3entities

110M

512 tokens

0.966

0.940

0.876

NERmembert2-3entities

111M

1024 tokens

0.967

0.942

0.875

NERmemberta-3entities (this model)

111M

1024 tokens

0.970

0.943

0.881

NERmembert-large-3entities

336M

512 tokens

0.969

0.947

0.890

The results of the 4-entity models on the 3-entity dataset are given for information only. They are not reported in the following.

Full results

Model

Metrics

PER

LOC

ORG

O

Overall

Jean-Baptiste/camembert-ner (110M)

Precision

0.918

0.860

0.831

0.992

0.974

Recall

0.964

0.908

0.544

0.964

0.948
F1
0.941

0.883

0.658

0.978

0.961

cmarkea/distilcamembert-base-ner (67.5M)

Precision

0.929

0.861

0.813

0.991

0.974

Recall

0.956

0.905

0.956

0.965

0.948
F1
0.942

0.882

0.647

0.978

0.961

NERmembert-base-3entities (110M)

Precision

0.961

0.935

0.877

0.995

0.986

Recall

0.972

0.946

0.876

0.994

0.986
F1
0.966

0.940

0.876

0.994

0.986

NERmembert2-3entities (111M)

Precision

0.964

0.935

0.872

0.995

0.985

Recall

0.967

0.949

0.878

0.993

0.984
F1
0.967

0.942

0.875

0.994

0.985

NERmemberta-3entities (111M) (this model)

Precision

0.966

0.934

0.880

0.995

0.985

Recall

0.973

0.952

0.883

0.993

0.985
F1
0.970

0.943

0.881

0.994

0.985

NERmembert-large-3entities (336M)

Precision

0.946

0.884

0.859

0.993

0.971

Recall

0.955

0.904

0.550

0.993

0.971
F1
0.951

0.894

0.671

0.988

0.971

In detail:

multiconer

For space reasons, we show only the F1 of the different models. You can see the full results below the table.


Model

PER

LOC

ORG

Jean-Baptiste/camembert-ner (110M)

0.940

0.761

0.723

cmarkea/distilcamembert-base-ner (67.5M)

0.921

0.748

0.694

NERmembert-base-3entities (110M)

0.960

0.887

0.876

NERmembert2-3entities (111M)

0.958

0.876

0.863

NERmemberta-3entities (111M) (this model)

0.964

0.865

0.859

NERmembert-large-3entities (336M)

0.965

0.902

0.896
Full results

Model

Metrics

PER

LOC

ORG

O

Overall

Jean-Baptiste/camembert-ner (110M)

Precision

0.908

0.717

0.753

0.987

0.947

Recall

0.975

0.811

0.696

0.878

0.880
F1
0.940

0.761

0.723

0.929

0.912

cmarkea/distilcamembert-base-ner (67.5M)

Precision

0.885

0.738

0.737

0.983

0.943

Recall

0.960

0.759

0.655

0.882

0.877
F1
0.921

0.748

0.694

0.930

0.909

NERmembert-base-3entities (110M)

Precision

0.957

0.894

0.876

0.986

0.972

Recall

0.962

0.880

0.878

0.985

0.972
F1
0.960

0.887

0.876

0.985

0.972

NERmembert2-3entities (111M)

Precision

0.951

0.906

0.853

0.984

0.967

Recall

0.966

0.848

0.874

0.984

0.967
F1
0.958

0.876

0.863

0.984

0.967

NERmemberta-3entities (111M) (this model)

Precision

0.962

0.859

0.862

0.985

0.970

Recall

0.967

0.871

0.857

0.984

0.970
F1
0.964

0.865

0.859

0.985

0.970

NERmembert-large-3entities (336M)

Precision

0.960

0.903

0.916

0.987

0.976

Recall

0.969

0.900

0.877

0.987

0.976
F1
0.965

0.902

0.896

0.987

0.976

multinerd

For space reasons, we show only the F1 of the different models. You can see the full results below the table.


Model

PER

LOC

ORG

Jean-Baptiste/camembert-ner (110M)

0.962

0.934

0.888

cmarkea/distilcamembert-base-ner (67.5M)

0.972

0.938

0.884

NERmembert-base-3entities (110M)

0.985

0.973

0.938

NERmembert2-3entities (111M)

0.985

0.972

0.933

NERmemberta-3entities (111M) (this model)

0.986

0.974

0.945

NERmembert-large-3entities (336M)

0.987

0.979

0.953
Full results

Model

Metrics

PER

LOC

ORG

O

Overall

Jean-Baptiste/camembert-ner (110M)

Precision

0.931

0.893

0.827

0.999

0.988

Recall

0.994

0.980

0.959

0.973

0.974
F1
0.962

0.934

0.888

0.986

0.981

cmarkea/distilcamembert-base-ner (67.5M)

Precision

0.954

0.908

0.817

0.999

0.990

Recall

0.991

0.969

0.963

0.975

0.975
F1
0.972

0.938

0.884

0.987

0.983

NERmembert-base-3entities (110M)

Precision

0.974

0.965

0.910

0.999

0.995

Recall

0.995

0.981

0.968

0.996

0.995
F1
0.985

0.973

0.938

0.998

0.995

NERmembert2-3entities (111M)

Precision

0.975

0.960

0.902

0.999

0.995

Recall

0.995

0.985

0.967

0.995

0.995
F1
0.985

0.972

0.933

0.997

0.995

NERmemberta-3entities (111M) (this model)

Precision

0.976

0.961

0.915

0.999

0.995

Recall

0.997

0.987

0.976

0.996

0.995
F1
0.986

0.974

0.945

0.997

0.995

NERmembert-large-3entities (336M)

Precision

0.979

0.970

0.927

0.999

0.996

Recall

0.996

0.987

0.980

0.997

0.996
F1
0.987

0.979

0.953

0.998

0.996

wikiner

For space reasons, we show only the F1 of the different models. You can see the full results below the table.


Model

PER

LOC

ORG

Jean-Baptiste/camembert-ner (110M)

0.986

0.966

0.938

cmarkea/distilcamembert-base-ner (67.5M)

0.983

0.964

0.925

NERmembert-base-3entities (110M)

0.969

0.945

0.878

NERmembert2-3entities (111M)

0.969

0.946

0.866

NERmemberta-3entities (111M) (this model)

0.971

0.948

0.885

NERmembert-large-3entities (336M)

0.972

0.950

0.893
Full results

Model

Metrics

PER

LOC

ORG

O

Overall

Jean-Baptiste/camembert-ner (110M)

Precision

0.986

0.962

0.925

0.999

0.994

Recall

0.987

0.969

0.951

0.965

0.967
F1
0.986

0.966

0.938

0.982

0.980

cmarkea/distilcamembert-base-ner (67.5M)

Precision

0.982

0.951

0.910

0.998

0.994

Recall

0.985

0.963

0.940

0.966

0.967
F1
0.983

0.964

0.925

0.982

0.80

NERmembert-base-3entities (110M)

Precision

0.971

0.947

0.866

0.994

0.989

Recall

0.969

0.942

0.891

0.995

0.989
F1
0.969

0.945

0.878

0.995

0.989

NERmembert2-3entities (111M)

Precision

0.971

0.946

0.863

0.994

0.988

Recall

0.967

0.946

0.870

0.995

0.988
F1
0.969

0.946

0.866

0.994

0.988

NERmemberta-3entities (111M) (this model)

Precision

0.972

0.946

0.865

0.995

0.987

Recall

0.970

0.950

0.905

0.995

0.987
F1
0.971

0.948

0.885

0.995

0.987

NERmembert-large-3entities (336M)

Precision

0.973

0.953

0.873

0.996

0.990

Recall

0.990

0.948

0.913

0.995

0.990
F1
0.972

0.950

0.893

0.996

0.990

wikiann

For space reasons, we show only the F1 of the different models. You can see the full results below the table.


Model

PER

LOC

ORG

Jean-Baptiste/camembert-ner (110M)

0.867

0.722

0.451

cmarkea/distilcamembert-base-ner (67.5M)

0.862

0.722

0.451

NERmembert-base-3entities (110M)

0.947

0.906

0.886

NERmembert2-3entities (111M)

0.950

0.911

0.910

NERmemberta-3entities (111M) (this model)

0.953

0.902

0.890

NERmembert-large-3entities (336M)

0.949

0.912

0.899
Full results

Model

Metrics

PER

LOC

ORG

O

Overall

Jean-Baptiste/camembert-ner (110M)

Precision

0.862

0.700

0.864

0.867

0.832

Recall

0.871

0.746

0.305

0.950

0.772
F1
0.867

0.722

0.451

0.867

0.801

cmarkea/distilcamembert-base-ner (67.5M)

Precision

0.862

0.700

0.864

0.867

0.832

Recall

0.871

0.746

0.305

0.950

0.772
F1
0.867

0.722

0.451

0.907

0.800

NERmembert-base-3entities (110M)

Precision

0.948

0.900

0.893

0.979

0.942

Recall

0.946

0.911

0.878

0.982

0.942
F1
0.947

0.906

0.886

0.980

0.942

NERmembert2-3entities (111M)

Precision

0.962

0.906

0.890

0.971

0.941

Recall

0.938

0.917

0.884

0.982

0.941
F1
0.950

0.911

0.887

0.976

0.941

NERmemberta-3entities (111M) (this model)

Precision

0.961

0.902

0.899

0.972

0.942

Recall

0.946

0.918

0.881

0.982

0.942
F1
0.953

0.902

0.890

0.977

0.942

NERmembert-large-3entities (336M)

Precision

0.958

0.917

0.897

0.980

0.948

Recall

0.940

0.915

0.901

0.983

0.948
F1
0.949

0.912

0.899

0.983

0.948

Usage

Code

from transformers import pipeline

ner = pipeline('token-classification', model='CATIE-AQ/NERmemberta-base-3entities', tokenizer='CATIE-AQ/NERmemberta-base-3entities', aggregation_strategy="simple")

result = ner(
"Le dévoilement du logo officiel des JO s'est déroulé le 21 octobre 2019 au Grand Rex. Ce nouvel emblème et cette nouvelle typographie ont été conçus par le designer Sylvain Boyer avec les agences Royalties & Ecobranding. Rond, il rassemble trois symboles : une médaille d'or, la flamme olympique et Marianne, symbolisée par un visage de femme mais privée de son bonnet phrygien caractéristique. La typographie dessinée fait référence à l'Art déco, mouvement artistique des années 1920, décennie pendant laquelle ont eu lieu pour la dernière fois les Jeux olympiques à Paris en 1924. Pour la première fois, ce logo sera unique pour les Jeux olympiques et les Jeux paralympiques."
)

print(result)

Try it through Space

A Space has been created to test the model. It is available here.

Environmental Impact

Carbon emissions were estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). The hardware, runtime, cloud provider, and compute region were utilized to estimate the carbon impact.

  • Hardware Type: A100 PCIe 40/80GB
  • Hours used: 2h51min
  • Cloud Provider: Private Infrastructure
  • Carbon Efficiency (kg/kWh): 0.047 (estimated from electricitymaps for the day of November 20, 2024.)
  • Carbon Emitted (Power consumption x Time x Carbon produced based on location of power grid): 0.0335 kg eq. CO2

Citations

NERmemBERTa-3entities

@misc {NERmemberta2024,
    author       = { {BOURDOIS, Loïck} },  
    organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
    title        = { NERmemberta-3entities (Revision 989f2ee) },
    year         = 2024,
    url          = { https://huggingface.co./CATIE-AQ/NERmemberta-3entities },
    doi          = { 10.57967/hf/3640 },
    publisher    = { Hugging Face }
}

NERmemBERT

@misc {NERmembert2024,
    author       = { {BOURDOIS, Loïck} },  
    organization = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
    title        = { NERmembert-base-3entities },
    year         = 2024,
    url          = { https://huggingface.co./CATIE-AQ/NERmembert-base-3entities },
    doi          = { 10.57967/hf/1752 },
    publisher    = { Hugging Face }
}

CamemBERT

@inproceedings{martin2020camembert,  
  title={CamemBERT: a Tasty French Language Model},  
  author={Martin, Louis and Muller, Benjamin and Su{\'a}rez, Pedro Javier Ortiz and Dupont, Yoann and Romary, Laurent and de la Clergerie, {\'E}ric Villemonte and Seddah, Djam{\'e} and Sagot, Beno{\^\i}t},  
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},  
  year={2020}}

CamemBERT 2.0

@misc{antoun2024camembert20smarterfrench,
      title={CamemBERT 2.0: A Smarter French Language Model Aged to Perfection}, 
      author={Wissam Antoun and Francis Kulumba and Rian Touchent and Éric de la Clergerie and Benoît Sagot and Djamé Seddah},
      year={2024},
      eprint={2411.08868},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.08868}, 
}

multiconer

@inproceedings{multiconer2-report,  
    title={{SemEval-2023 Task 2: Fine-grained Multilingual Named Entity Recognition (MultiCoNER 2)}},  
    author={Fetahu, Besnik and Kar, Sudipta and Chen, Zhiyu and Rokhlenko, Oleg and Malmasi, Shervin},  
    booktitle={Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)},  
    year={2023},  
    publisher={Association for Computational Linguistics}}

@article{multiconer2-data,  
    title={{MultiCoNER v2: a Large Multilingual dataset for Fine-grained and Noisy Named Entity Recognition}},  
    author={Fetahu, Besnik and Chen, Zhiyu and Kar, Sudipta and Rokhlenko, Oleg and Malmasi, Shervin},  
    year={2023}}

multinerd

@inproceedings{tedeschi-navigli-2022-multinerd,  
    title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)",  
    author = "Tedeschi, Simone and  Navigli, Roberto",  
    booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022",  
    month = jul,  
    year = "2022",  
    address = "Seattle, United States",  
    publisher = "Association for Computational Linguistics",  
    url = "https://aclanthology.org/2022.findings-naacl.60",  
    doi = "10.18653/v1/2022.findings-naacl.60",  
    pages = "801--812"}

pii-masking-200k

@misc {ai4privacy_2023,  
    author = { {ai4Privacy} },  
    title = { pii-masking-200k (Revision 1d4c0a1) },  
    year = 2023,  
    url = { https://huggingface.co./datasets/ai4privacy/pii-masking-200k },  
    doi = { 10.57967/hf/1532 },  
    publisher = { Hugging Face }}

wikiann

@inproceedings{rahimi-etal-2019-massively,  
    title = "Massively Multilingual Transfer for {NER}",  
    author = "Rahimi, Afshin and Li, Yuan and Cohn, Trevor",  
    booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics",  
    month = jul,  
    year = "2019",  
    address = "Florence, Italy",  
    publisher = "Association for Computational Linguistics",  
    url = "https://www.aclweb.org/anthology/P19-1015",  
    pages = "151--164"}

wikiner

@article{NOTHMAN2013151,  
    title = {Learning multilingual named entity recognition from Wikipedia},  
    journal = {Artificial Intelligence},  
    volume = {194},  
    pages = {151-175},  
    year = {2013},  
    note = {Artificial Intelligence, Wikipedia and Semi-Structured Resources},  
    issn = {0004-3702},  
    doi = {https://doi.org/10.1016/j.artint.2012.03.006},  
    url = {https://www.sciencedirect.com/science/article/pii/S0004370212000276},  
    author = {Joel Nothman and Nicky Ringland and Will Radford and Tara Murphy and James R. Curran}}

frenchNER_3entities

@misc {frenchNER2024,  
    author       = { {BOURDOIS, Loïck} },  
    organization  = { {Centre Aquitain des Technologies de l'Information et Electroniques} },  
    title        = { frenchNER_3entities },  
    year         = 2024,  
    url          = { https://huggingface.co./CATIE-AQ/frenchNER_3entities },  
    doi          = { 10.57967/hf/1751 },  
    publisher    = { Hugging Face }  
}

License

MIT

Downloads last month
36
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CATIE-AQ/NERmemberta-3entities

Finetuned
(11)
this model

Dataset used to train CATIE-AQ/NERmemberta-3entities

Space using CATIE-AQ/NERmemberta-3entities 1

Collection including CATIE-AQ/NERmemberta-3entities