File size: 7,236 Bytes
70f3fd1 dc694a3 70f3fd1 dc694a3 70f3fd1 dc694a3 70f3fd1 dc694a3 70f3fd1 dc694a3 70f3fd1 dc694a3 70f3fd1 dc694a3 70f3fd1 dc694a3 70f3fd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: mit
pipeline_tag: image-text-to-text
library_name: transformers
base_model:
- OpenGVLab/InternVL2_5-4B
- Qwen/Qwen2.5-3B-Instruct
base_model_relation: merge
language:
- multilingual
tags:
- Sa2VA
- custom_code
---
# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos
[\[π GitHub\]](https://github.com/magic-research/Sa2VA)
[\[π Sa2VA paper\]](https://arxiv.org/abs/2501.04001)
[\[π Quick Start\]](#quick-start)
## Introduction
Sa2VA is an MLLM capable of question answering, visual prompt understanding, and dense object segmentation at both image and video levels. It achieves comparable performance to SOTA MLLMs Qwen2-VL and InternVL2.5 on question-answering benchmarks. Additionally, Sa2VA possesses the visual prompt understanding and dense object segmentation capabilities that SOTA MLLMs Qwen2-VL and InternVL2.5 lack. Sa2VA achieves SOTA performance on both image and video grounding and segmentation benchmarks.
## Sa2VA Family
We built the Sa2VA series based on Qwen2-VL and InternVL2/2.5. In the following table, we provide some Sa2VA models built on InternVL2.5. Other Sa2VA models will be open-sourced soon.
| Model Name | Base MLLM | Language Part | HF Link |
|:----------:|:-----------------------------------------------------------------:|:---------------------------------------------------------------------------:|:----------------------------------------------------:|
| Sa2VA-1B | [InternVL2.0-1B](https://huggingface.co./OpenGVLab/InternVL2-1B) | [Qwen2-0.5B-Instruct](https://huggingface.co./Qwen/Qwen2-0.5B-Instruct) | [π€ link](https://huggingface.co./ByteDance/Sa2VA-1B) |
| Sa2VA-4B | [InternVL2.5-4B](https://huggingface.co./OpenGVLab/InternVL2_5-4B) | [Qwen2.5-3B-Instruct](https://huggingface.co./Qwen/Qwen2.5-3B-Instruct) | [π€ link](https://huggingface.co./ByteDance/Sa2VA-4B) |
| Sa2VA-8B | [InternVL2.5-8B](https://huggingface.co./OpenGVLab/InternVL2_5-8B) | [internlm2_5-7b-chat](https://huggingface.co./internlm/internlm2_5-7b-chat) | [π€ link](https://huggingface.co./ByteDance/Sa2VA-8B) |
## Sa2VA Performance
| Model Name | MMBench | MME | RefCOCO | RefCOCO+ | RefCOCOg | MeVIS | DAVIS | ReVOS |
|:----------:|:---------------------------------------------------------------:|:--------------------------------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:----------------------------------------------------:|:-----:|
| Sa2VA-1B | 1381/405 | 68.3 | 77.4 | 69.9 | 72.3 | 50.8 | 72.3 | 47.6 |
| Sa2VA-4B | 1536/530 | 77.3 | 78.9 | 71.7 | 74.1 | 52.1 | 73.8 | 53.2 |
| Sa2VA-8B | 1617/511 | 81.6 | 81.6 | 76.2 | 78.7 | 57.0 | 75.2 | 57.6 |
## Quick Start
We provide an example code to run `Sa2VA` using `transformers`.
```python
import torch
from transformers import AutoTokenizer, AutoModel
from PIL import Image
import numpy as np
import os
# load the model and tokenizer
path = "ByteDance/Sa2VA-4B"
model = AutoModel.from_pretrained(
path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=True,
trust_remote_code=True).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False)
# for image chat
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Please describe the image."
image = Image.open(image_path).convert('RGB')
input_dict = {
'image': image,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
# for image chat with segmentation output
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
image = Image.open(image_path).convert('RGB')
input_dict = {
'image': image,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(1, h, w), ...)
# for chat with visual prompt (mask format) input
mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
image_path = "/PATH/TO/IMAGE"
text_prompts = "<image>Can you provide me with a detailed description of the region in the picture marked by region1."
image = Image.open(image_path).convert('RGB')
input_dict = {
'image': image,
'text': text_prompts,
'past_text': '',
'mask_prompts': mask_prompts,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
# for video chat
video_folder = "/PATH/TO/VIDEO_FOLDER"
images_paths = os.listdir(video_folder)
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
if len(images_paths) > 5: # uniformly sample 5 frames
step = (len(images_paths) - 1) // (5 - 1)
images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
text_prompts = "<image>Please describe the video."
input_dict = {
'video': images_paths,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
# for video chat with segmentation mask output
video_folder = "/PATH/TO/VIDEO_FOLDER"
images_paths = os.listdir(video_folder)
images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
text_prompts = "<image>Please segment the person."
input_dict = {
'video': images_paths,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
answer = return_dict["prediction"] # the text format answer
masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(n_frames, h, w), ...)
```
## Citation
If you find this project useful in your research, please consider citing:
```BibTeX
@article{sa2va,
title={Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos},
author={Yuan, Haobo and Li, Xiangtai and Zhang, Tao and Huang, Zilong Huang and Xu, Shilin and Ji, Shunping and Tong, Yunhai and Qi, Lu and Feng, Jiashi and Yang, Ming-Hsuan},
journal={arXiv preprint},
year={2025}
}
```
|