Xiangtai commited on
Commit
dc694a3
Β·
verified Β·
1 Parent(s): df9584f

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +16 -12
README.md CHANGED
@@ -3,9 +3,13 @@ license: mit
3
  pipeline_tag: image-text-to-text
4
  library_name: transformers
5
  base_model:
 
6
  - OpenGVLab/InternVL2_5-8B
 
7
  - OpenGVLab/InternViT-300M-448px-V2_5
8
  - internlm/internlm2_5-7b-chat
 
 
9
  base_model_relation: merge
10
  language:
11
  - multilingual
@@ -16,8 +20,8 @@ tags:
16
 
17
  # Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos
18
 
19
- [\[πŸ“‚ GitHub\]](https://github.com/lxtGH/Sa2VA_opensource)
20
- [\[πŸ“œ Sa2VA paper\]]()
21
  [\[πŸš€ Quick Start\]](#quick-start)
22
 
23
 
@@ -30,11 +34,11 @@ Sa2VA is an MLLM capable of question answering, visual prompt understanding, and
30
 
31
  We built the Sa2VA series based on Qwen2-VL and InternVL2/2.5. In the following table, we provide some Sa2VA models built on InternVL2.5. Other Sa2VA models will be open-sourced soon.
32
 
33
- | Model Name | Base MLLM | Language Part | HF Link |
34
- |:----------:|:-----------------------------------------------------------------:|:-----------------------------------------------------------------------------:|:----------------------------------------------------:|
35
- | Sa2VA-1B | [InternVL2.0-1B](https://huggingface.co/OpenGVLab/InternVL2-1B) | [Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-1B) |
36
- | Sa2VA-4B | [InternVL2.5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-4B) |
37
- | Sa2VA-8B | [InternVL2.5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-8B) |
38
 
39
  ## Sa2VA Performance
40
  | Model Name | MMBench | MME | RefCOCO | RefCOCO+ | RefCOCOg | MeVIS | DAVIS | ReVOS |
@@ -67,7 +71,7 @@ tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast
67
 
68
  # for image chat
69
  image_path = "/PATH/TO/IMAGE"
70
- text_prompts = "<image>\nPlease describe the image."
71
  image = Image.open(image_path).convert('RGB')
72
  input_dict = {
73
  'image': image,
@@ -81,7 +85,7 @@ answer = return_dict["prediction"] # the text format answer
81
 
82
  # for image chat with segmentation output
83
  image_path = "/PATH/TO/IMAGE"
84
- text_prompts = "<image>\nCould you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
85
  image = Image.open(image_path).convert('RGB')
86
  input_dict = {
87
  'image': image,
@@ -97,7 +101,7 @@ masks = return_dict['prediction_masks'] # segmentation masks, list(np.array(1,
97
  # for chat with visual prompt (mask format) input
98
  mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
99
  image_path = "/PATH/TO/IMAGE"
100
- text_prompts = "<image>\nCan you provide me with a detailed description of the region in the picture marked by region1."
101
  image = Image.open(image_path).convert('RGB')
102
  input_dict = {
103
  'image': image,
@@ -116,7 +120,7 @@ images_paths = [os.path.join(video_folder, image_path) for image_name in images_
116
  if len(images_paths) > 5: # uniformly sample 5 frames
117
  step = (len(images_paths) - 1) // (5 - 1)
118
  images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
119
- text_prompts = "<image>\nPlease describe the video."
120
  input_dict = {
121
  'video': images_paths,
122
  'text': text_prompts,
@@ -132,7 +136,7 @@ answer = return_dict["prediction"] # the text format answer
132
  video_folder = "/PATH/TO/VIDEO_FOLDER"
133
  images_paths = os.listdir(video_folder)
134
  images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
135
- text_prompts = "<image>\nPlease segment the person."
136
  input_dict = {
137
  'video': images_paths,
138
  'text': text_prompts,
 
3
  pipeline_tag: image-text-to-text
4
  library_name: transformers
5
  base_model:
6
+ - OpenGVLab/InternVL2-1B
7
  - OpenGVLab/InternVL2_5-8B
8
+ - OpenGVLab/InternVL2_5-4B
9
  - OpenGVLab/InternViT-300M-448px-V2_5
10
  - internlm/internlm2_5-7b-chat
11
+ - Qwen/Qwen2-0.5B-Instruct
12
+ - Qwen/Qwen2.5-3B-Instruct
13
  base_model_relation: merge
14
  language:
15
  - multilingual
 
20
 
21
  # Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos
22
 
23
+ [\[πŸ“‚ GitHub\]](https://github.com/magic-research/Sa2VA)
24
+ [\[πŸ“œ Sa2VA paper\]](https://arxiv.org/abs/2501.04001)
25
  [\[πŸš€ Quick Start\]](#quick-start)
26
 
27
 
 
34
 
35
  We built the Sa2VA series based on Qwen2-VL and InternVL2/2.5. In the following table, we provide some Sa2VA models built on InternVL2.5. Other Sa2VA models will be open-sourced soon.
36
 
37
+ | Model Name | Base MLLM | Language Part | HF Link |
38
+ |:----------:|:-----------------------------------------------------------------:|:---------------------------------------------------------------------------:|:----------------------------------------------------:|
39
+ | Sa2VA-1B | [InternVL2.0-1B](https://huggingface.co/OpenGVLab/InternVL2-1B) | [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-1B) |
40
+ | Sa2VA-4B | [InternVL2.5-4B](https://huggingface.co/OpenGVLab/InternVL2_5-4B) | [Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-4B) |
41
+ | Sa2VA-8B | [InternVL2.5-8B](https://huggingface.co/OpenGVLab/InternVL2_5-8B) | [internlm2_5-7b-chat](https://huggingface.co/internlm/internlm2_5-7b-chat) | [πŸ€— link](https://huggingface.co/ByteDance/Sa2VA-8B) |
42
 
43
  ## Sa2VA Performance
44
  | Model Name | MMBench | MME | RefCOCO | RefCOCO+ | RefCOCOg | MeVIS | DAVIS | ReVOS |
 
71
 
72
  # for image chat
73
  image_path = "/PATH/TO/IMAGE"
74
+ text_prompts = "<image>Please describe the image."
75
  image = Image.open(image_path).convert('RGB')
76
  input_dict = {
77
  'image': image,
 
85
 
86
  # for image chat with segmentation output
87
  image_path = "/PATH/TO/IMAGE"
88
+ text_prompts = "<image>Could you please give me a brief description of the image? Please respond with interleaved segmentation masks for the corresponding parts of the answer."
89
  image = Image.open(image_path).convert('RGB')
90
  input_dict = {
91
  'image': image,
 
101
  # for chat with visual prompt (mask format) input
102
  mask_prompts = np.load('/PATH/TO/pred_masks.npy') # np.array(n_prompts, h, w)
103
  image_path = "/PATH/TO/IMAGE"
104
+ text_prompts = "<image>Can you provide me with a detailed description of the region in the picture marked by region1."
105
  image = Image.open(image_path).convert('RGB')
106
  input_dict = {
107
  'image': image,
 
120
  if len(images_paths) > 5: # uniformly sample 5 frames
121
  step = (len(images_paths) - 1) // (5 - 1)
122
  images_paths = [images_paths[0]] + images_paths[1:-1][::step][1:] + [images_paths[-1]]
123
+ text_prompts = "<image>Please describe the video."
124
  input_dict = {
125
  'video': images_paths,
126
  'text': text_prompts,
 
136
  video_folder = "/PATH/TO/VIDEO_FOLDER"
137
  images_paths = os.listdir(video_folder)
138
  images_paths = [os.path.join(video_folder, image_path) for image_name in images_paths]
139
+ text_prompts = "<image>Please segment the person."
140
  input_dict = {
141
  'video': images_paths,
142
  'text': text_prompts,