Edit model card

RWKV-4 430M

Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing.

Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing.

Use RWKV-4 models (NOT RWKV-4a, NOT RWKV-4b) unless you know what you are doing.

Model Description

RWKV-4 430M is a L24-D1024 causal language model trained on the Pile. See https://github.com/BlinkDL/RWKV-LM for details.

Use https://github.com/BlinkDL/ChatRWKV to run it.

ctx_len = 1024 n_layer = 24 n_embd = 1024

Final checkpoint: RWKV-4-Pile-430M-20220808-8066.pth : Trained on the Pile for 333B tokens.

  • Pile loss 2.2621
  • LAMBADA ppl 13.04, acc 45.16%
  • PIQA acc 67.52%
  • SC2016 acc 63.87%
  • Hellaswag acc_norm 40.90%

With tiny attention (--tiny_att_dim 512 --tiny_att_layer 18): RWKV-4a-Pile-433M-20221223-8039.pth

  • Pile loss 2.2394
  • LAMBADA ppl 10.54, acc 50.20%
  • PIQA acc 68.12%
  • SC2016 acc 63.55%
  • Hellaswag acc_norm 40.82%

RWKV-4b-Pile-436M-20230211-8012.pth (--my_testing 'a')

  • Pile loss 2.2026
  • LAMBADA ppl 10.48, acc 51.35%
  • PIQA acc 68.06%
  • SC2016 acc 63.17%
  • Hellaswag acc_norm 42.09%
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train BlinkDL/rwkv-4-pile-430m

Spaces using BlinkDL/rwkv-4-pile-430m 3