llama-3b-stance
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9008
- Accuracy: 0.5849
- Precision: 0.5752
- Recall: 0.5151
- F1: 0.5254
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
No log | 1.0 | 23 | 1.1089 | 0.4402 | 0.3888 | 0.3875 | 0.3878 |
No log | 2.0 | 46 | 1.0486 | 0.4898 | 0.4587 | 0.4419 | 0.4417 |
No log | 3.0 | 69 | 0.9954 | 0.5521 | 0.5380 | 0.4659 | 0.4701 |
No log | 4.0 | 92 | 0.9417 | 0.5726 | 0.5441 | 0.4689 | 0.4756 |
No log | 5.0 | 115 | 0.9531 | 0.5752 | 0.5827 | 0.4814 | 0.4831 |
No log | 6.0 | 138 | 0.9205 | 0.5772 | 0.5606 | 0.4979 | 0.5068 |
No log | 7.0 | 161 | 0.9181 | 0.5746 | 0.5624 | 0.5124 | 0.5207 |
No log | 8.0 | 184 | 0.9157 | 0.5680 | 0.5498 | 0.5255 | 0.5298 |
No log | 9.0 | 207 | 0.9032 | 0.5787 | 0.5601 | 0.5170 | 0.5258 |
No log | 10.0 | 230 | 0.9008 | 0.5849 | 0.5752 | 0.5151 | 0.5254 |
Framework versions
- PEFT 0.14.0
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 17
Model tree for BayanDuygu/llama-3b-stance
Base model
meta-llama/Llama-3.2-3B-Instruct