metadata
tags:
- image-classification
- ecology
- fungi
- FGVC
library_name: DanishFungi
license: cc-by-nc-4.0
Model card for BVRA/inception_resnet_v2.in1k_ft_df20m_299
Model Details
- Model Type: Danish Fungi Classification
- Model Stats:
- Params (M): 54.6M
- Image size: 299 x 299
- Papers:
- Original: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning --> https://arxiv.org/pdf/1602.07261
- Train Dataset: DF20M --> https://github.com/BohemianVRA/DanishFungiDataset/
Model Usage
Image Embeddings
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/inception_resnet_v2.in1k_ft_df20m_299 ", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize((299, 299)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
img = Image.open(PATH_TO_YOUR_IMAGE)
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
Citation
@InProceedings{Picek_2022_WACV,
author = {Picek, Lukas and Sulc, Milan and Matas, Jiri and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
title = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {1525-1535}
}
@article{picek2022automatic,
title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
author={Picek, Lukas and Sulc, Milan and Matas, Jiri and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
journal={Sensors},
volume={22},
number={2},
pages={633},
year={2022},
publisher={Multidisciplinary Digital Publishing Institute}
}