See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cb39c063f14002d5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cb39c063f14002d5_train_data.json
type:
field_instruction: problem
field_output: qwq
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/68f80a80-b5c8-447a-92a3-d9433fb29cde
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/cb39c063f14002d5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.037878213966455056
wandb_entity: null
wandb_mode: online
wandb_name: 5a1d5196-a942-457d-9fd4-72f486ecfb9f
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5a1d5196-a942-457d-9fd4-72f486ecfb9f
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
68f80a80-b5c8-447a-92a3-d9433fb29cde
This model is a fine-tuned version of unsloth/Qwen2.5-Math-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4261
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2520
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.8902 | 0.0003 | 1 | 0.7814 |
0.4751 | 0.0252 | 100 | 0.4923 |
0.6004 | 0.0504 | 200 | 0.4770 |
0.4982 | 0.0756 | 300 | 0.4688 |
0.4731 | 0.1008 | 400 | 0.4625 |
0.4162 | 0.1260 | 500 | 0.4577 |
0.4351 | 0.1512 | 600 | 0.4540 |
0.4932 | 0.1764 | 700 | 0.4506 |
0.5687 | 0.2016 | 800 | 0.4482 |
0.5139 | 0.2268 | 900 | 0.4452 |
0.426 | 0.2520 | 1000 | 0.4426 |
0.3966 | 0.2772 | 1100 | 0.4406 |
0.4305 | 0.3024 | 1200 | 0.4380 |
0.3815 | 0.3275 | 1300 | 0.4363 |
0.4487 | 0.3527 | 1400 | 0.4344 |
0.3897 | 0.3779 | 1500 | 0.4328 |
0.3705 | 0.4031 | 1600 | 0.4312 |
0.3748 | 0.4283 | 1700 | 0.4300 |
0.4569 | 0.4535 | 1800 | 0.4289 |
0.4704 | 0.4787 | 1900 | 0.4281 |
0.3975 | 0.5039 | 2000 | 0.4273 |
0.4603 | 0.5291 | 2100 | 0.4268 |
0.3964 | 0.5543 | 2200 | 0.4264 |
0.4499 | 0.5795 | 2300 | 0.4262 |
0.3652 | 0.6047 | 2400 | 0.4261 |
0.5563 | 0.6299 | 2500 | 0.4261 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.