See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/Qwen2.5-Math-1.5B
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 29f15a2625e7ff70_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/29f15a2625e7ff70_train_data.json
type:
field_input: phonemes
field_instruction: text_description
field_output: text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
device_map:
? ''
: 0,1,2,3,4,5,6,7
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
flash_attention: true
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: Alphatao/5f41d88f-6034-46f3-a2f6-0d2fac5aa67c
hub_repo: null
hub_strategy: null
hub_token: null
learning_rate: 0.0002
load_best_model_at_end: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 2520
micro_batch_size: 4
mlflow_experiment_name: /tmp/29f15a2625e7ff70_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 2
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.03253196265330687
wandb_entity: null
wandb_mode: online
wandb_name: 9e1f4c11-aa11-47f8-b2c5-a540a4bd0c15
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9e1f4c11-aa11-47f8-b2c5-a540a4bd0c15
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
5f41d88f-6034-46f3-a2f6-0d2fac5aa67c
This model is a fine-tuned version of unsloth/Qwen2.5-Math-1.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1811
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2520
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.5759 | 0.0002 | 1 | 4.7131 |
0.4532 | 0.0215 | 100 | 0.5427 |
0.4828 | 0.0430 | 200 | 0.4158 |
0.2992 | 0.0646 | 300 | 0.3530 |
0.3098 | 0.0861 | 400 | 0.3217 |
0.355 | 0.1076 | 500 | 0.2956 |
0.248 | 0.1291 | 600 | 0.2758 |
0.3585 | 0.1506 | 700 | 0.2605 |
0.207 | 0.1722 | 800 | 0.2486 |
0.2147 | 0.1937 | 900 | 0.2392 |
0.2319 | 0.2152 | 1000 | 0.2316 |
0.1584 | 0.2367 | 1100 | 0.2230 |
0.1843 | 0.2582 | 1200 | 0.2172 |
0.2187 | 0.2798 | 1300 | 0.2106 |
0.2544 | 0.3013 | 1400 | 0.2050 |
0.1892 | 0.3228 | 1500 | 0.2019 |
0.1285 | 0.3443 | 1600 | 0.1957 |
0.2587 | 0.3658 | 1700 | 0.1924 |
0.1679 | 0.3874 | 1800 | 0.1888 |
0.2051 | 0.4089 | 1900 | 0.1864 |
0.1689 | 0.4304 | 2000 | 0.1842 |
0.2918 | 0.4519 | 2100 | 0.1830 |
0.1747 | 0.4734 | 2200 | 0.1820 |
0.2062 | 0.4950 | 2300 | 0.1814 |
0.2223 | 0.5165 | 2400 | 0.1812 |
0.1874 | 0.5380 | 2500 | 0.1811 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.