bert2bert-extremecleandata-lr-5e-05-batchsize-2-encmaxlen-2048-decmaxlen-512-abs

  • Dev set: Extreme clean data
  • Encoder max length (input): 2048
  • Decoder max length (output): 512

This model was trained from scratch on the id_liputan6 dataset. It achieves the following results on the evaluation set:

  • Loss: 9.4148
  • R1 Precision: 0.0188
  • R1 Recall: 0.0105
  • R1 Fmeasure: 0.0133
  • R2 Precision: 0.0
  • R2 Recall: 0.0
  • R2 Fmeasure: 0.0
  • Rl Precision: 0.0188
  • Rl Recall: 0.0106
  • Rl Fmeasure: 0.0133

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss R1 Precision R1 Recall R1 Fmeasure R2 Precision R2 Recall R2 Fmeasure Rl Precision Rl Recall Rl Fmeasure
7.0391 1.0 96942 8.9423 0.0188 0.0105 0.0133 0.0 0.0 0.0 0.0188 0.0106 0.0133
7.0611 2.0 193884 8.9023 0.0188 0.0105 0.0133 0.0 0.0 0.0 0.0188 0.0106 0.0133
7.0266 3.0 290826 9.4047 0.0188 0.0105 0.0133 0.0 0.0 0.0 0.0188 0.0106 0.0133
7.0237 4.0 387768 9.2888 0.0188 0.0105 0.0133 0.0 0.0 0.0 0.0188 0.0106 0.0133
6.9911 5.0 484710 9.4148 0.0188 0.0105 0.0133 0.0 0.0 0.0 0.0188 0.0106 0.0133

Framework versions

  • Transformers 4.39.0
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
264
Safetensors
Model size
251M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Alfahluzi/bert2bert-Large