See axolotl config
axolotl version: 0.6.0
base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/UFOs-Finetune-V1
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: json
data_files: plain_qa_list.jsonl
ds_type: json
type: chat_template
chat_template: chatml
field_messages: conversations
message_field_role: from
message_field_content: value
roles:
user:
- human
assistant:
- gpt
system:
- system
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/UFOs-Finetune-V1/out
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
max_steps: 100000
wandb_project: "UFO_LLM_Finetune"
wandb_entity:
wandb_watch: "all"
wandb_name: "UFO_LLM_Finetune-V1"
wandb_log_model: "false"
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: /workspace/axolotl/outputs/out/checkpoint-18
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
UFOs-Finetune-V1
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the json dataset. It achieves the following results on the evaluation set:
- Loss: 1.3935
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.7686 | 0.1111 | 1 | 1.6895 |
2.0582 | 0.3333 | 3 | 1.6884 |
1.9135 | 0.6667 | 6 | 1.6793 |
1.8261 | 1.0 | 9 | 1.6667 |
1.8757 | 1.3333 | 12 | 1.6570 |
1.8754 | 1.6667 | 15 | 1.6501 |
1.8426 | 2.0 | 18 | 1.6468 |
2.8515 | 4.1739 | 21 | 1.4353 |
1.3702 | 4.6957 | 24 | 1.4068 |
1.2889 | 5.1739 | 27 | 1.3909 |
1.2635 | 5.6957 | 30 | 1.3870 |
1.2139 | 6.1739 | 33 | 1.3874 |
1.1786 | 6.6957 | 36 | 1.3895 |
1.1458 | 7.1739 | 39 | 1.3921 |
1.1389 | 7.6957 | 42 | 1.3929 |
1.1255 | 8.1739 | 45 | 1.3934 |
1.1589 | 8.6957 | 48 | 1.3935 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.