Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/Mistral-QLoRA-Pretraining-Test-v1.1

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: AiAF/pretraining.jsonl
    type: completion

dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: /workspace/axolotl/outputs/qlora-out/Mistral-QLoRA-Pretraining-Test-V1.1.1

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: "LLM_QLoRA-Pretraining-Practice"
wandb_entity:
wandb_watch: "all"
wandb_name: "Mistral-QLoRA-Pretraining-Test-V1.1"
wandb_log_model: "false"

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 10
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: /workspace/axolotl/outputs/qlora-out/Mistral-QLoRA-Pretraining-Test-V1.1/checkpoint-40
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

Mistral-QLoRA-Pretraining-Test-v1.1

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the AiAF/pretraining.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8738

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss
1.9972 0.1176 1 1.8782
1.8162 0.2353 2 1.8782
1.8588 0.4706 4 1.8783
2.0207 0.7059 6 1.8782
1.9881 0.9412 8 1.8780
1.9846 1.2353 10 1.8779
1.8436 1.4706 12 1.8778
1.9974 1.7059 14 1.8775
2.0703 1.9412 16 1.8773
1.9806 2.2353 18 1.8770
1.8501 2.4706 20 1.8769
1.9708 2.7059 22 1.8766
2.0717 2.9412 24 1.8763
2.126 3.2353 26 1.8762
1.931 3.4706 28 1.8760
1.8087 3.7059 30 1.8758
1.8101 3.9412 32 1.8758
2.0657 4.2353 34 1.8758
1.965 4.4706 36 1.8757
1.9222 4.7059 38 1.8757
1.9094 4.9412 40 1.8757
1.9283 5.2353 42 1.8756
2.0211 5.4706 44 1.8754
1.909 5.7059 46 1.8751
1.8289 5.9412 48 1.8749
1.9443 6.2353 50 1.8748
2.0195 6.4706 52 1.8747
1.7326 6.7059 54 1.8744
1.8524 6.9412 56 1.8743
1.958 7.2353 58 1.8742
1.9866 7.4706 60 1.8741
2.0558 7.7059 62 1.8741
1.9277 7.9412 64 1.8740
2.0108 8.2353 66 1.8739
1.9575 8.4706 68 1.8740
1.9107 8.7059 70 1.8739
1.9935 8.9412 72 1.8738
2.0618 9.2353 74 1.8738
1.8251 9.4706 76 1.8739
1.9817 9.7059 78 1.8739
1.9202 9.9412 80 1.8738

Framework versions

  • PEFT 0.14.0
  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
1
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for AiAF/Mistral-QLoRA-Pretraining-Test-v1.1

Adapter
(1753)
this model

Dataset used to train AiAF/Mistral-QLoRA-Pretraining-Test-v1.1