Output_llama70B_70-15-15
This model is a fine-tuned version of meta-llama/Llama-3.3-70B-Instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5734
- Balanced Accuracy: 0.7044
- Accuracy: 0.6923
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy |
---|---|---|---|---|---|
No log | 1.0 | 46 | 0.7989 | 0.5634 | 0.5449 |
No log | 2.0 | 92 | 0.6930 | 0.5440 | 0.5449 |
No log | 3.0 | 138 | 0.6273 | 0.6321 | 0.6026 |
No log | 4.0 | 184 | 0.6713 | 0.5862 | 0.5833 |
No log | 5.0 | 230 | 0.6085 | 0.6298 | 0.6218 |
No log | 6.0 | 276 | 0.6010 | 0.6623 | 0.6538 |
No log | 7.0 | 322 | 0.5909 | 0.6800 | 0.6731 |
No log | 8.0 | 368 | 0.5874 | 0.6646 | 0.6603 |
No log | 9.0 | 414 | 0.5819 | 0.6722 | 0.6667 |
No log | 10.0 | 460 | 0.5734 | 0.7044 | 0.6923 |
Framework versions
- PEFT 0.10.0
- Transformers 4.45.2
- Pytorch 2.5.1+cu124
- Datasets 2.18.0
- Tokenizers 0.20.3
- Downloads last month
- 5
Model tree for Ahatsham/Output_llama70B_70-15-15
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct