AescF's picture
End of training
de86f8b
metadata
license: apache-2.0
base_model: facebook/hubert-base-ls960
tags:
  - generated_from_trainer
datasets:
  - common_language
metrics:
  - accuracy
model-index:
  - name: hubert-base-ls960-finetuned-common_language-finetuned-common_language
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: Common Language
          type: common_language
          config: full
          split: test
          args: full
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8011068254234446

hubert-base-ls960-finetuned-common_language-finetuned-common_language

This model is a fine-tuned version of facebook/hubert-base-ls960 on the Common Language dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4164
  • Accuracy: 0.8011

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.9713 1.0 2774 3.0764 0.1615
1.7443 2.0 5549 1.8279 0.4734
1.1304 3.0 8323 1.3202 0.6371
1.2718 4.0 11098 1.1571 0.6968
0.769 5.0 13872 1.2917 0.7127
0.2656 6.0 16647 1.1549 0.7479
0.2939 7.0 19421 1.2372 0.7736
0.1278 8.0 22196 1.2985 0.7875
0.5175 9.0 24970 1.3664 0.7986
0.0547 10.0 27740 1.4164 0.8011

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3