bert-base-multilingual-cased-finetuned-yiddish-experiment-1
This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4022
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.9585 | 0.4717 | 100 | 2.0347 |
1.7233 | 0.9434 | 200 | 1.5785 |
1.4538 | 1.4151 | 300 | 1.5119 |
1.3844 | 1.8868 | 400 | 1.4678 |
1.3024 | 2.3585 | 500 | 1.4263 |
1.2709 | 2.8302 | 600 | 1.4057 |
1.2155 | 3.3019 | 700 | 1.4144 |
1.2136 | 3.7736 | 800 | 1.4022 |
1.151 | 4.2453 | 900 | 1.4880 |
1.1371 | 4.7170 | 1000 | 1.4477 |
1.1091 | 5.1887 | 1100 | 1.4028 |
1.0638 | 5.6604 | 1200 | 1.4788 |
1.0468 | 6.1321 | 1300 | 1.4812 |
1.0122 | 6.6038 | 1400 | 1.4641 |
1.0158 | 7.0755 | 1500 | 1.5584 |
0.9775 | 7.5472 | 1600 | 1.5608 |
0.9455 | 8.0189 | 1700 | 1.6017 |
0.929 | 8.4906 | 1800 | 1.5681 |
0.9406 | 8.9623 | 1900 | 1.5814 |
0.9066 | 9.4340 | 2000 | 1.6071 |
0.9317 | 9.9057 | 2100 | 1.5979 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 194
Model tree for Addaci/bert-base-multilingual-cased-finetuned-yiddish-experiment-1
Base model
google-bert/bert-base-multilingual-cased