Update README.md

#2
by lwlwlw - opened
Files changed (1) hide show
  1. README.md +3 -2
README.md CHANGED
@@ -99,7 +99,7 @@ def load_image(image_file, input_size=448, max_num=6):
99
  pixel_values = torch.stack(pixel_values)
100
  return pixel_values
101
 
102
- path = "OpenGVLab/InternVL-Chat-V1-5"
103
  # If you have an 80G A100 GPU, you can put the entire model on a single GPU.
104
  model = AutoModel.from_pretrained(
105
  path,
@@ -175,5 +175,6 @@ This project is released under the MIT license.
175
 
176
  ## Acknowledgement
177
 
178
- ChemVLM is built on [InternVL](https://github.com/OpenGVLab/InternVL).
 
179
  InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!
 
99
  pixel_values = torch.stack(pixel_values)
100
  return pixel_values
101
 
102
+ path = "AI4Chem/ChemVLM-26B"
103
  # If you have an 80G A100 GPU, you can put the entire model on a single GPU.
104
  model = AutoModel.from_pretrained(
105
  path,
 
175
 
176
  ## Acknowledgement
177
 
178
+ ChemVLM is built on [InternVL](https://github.com/OpenGVLab/InternVL).
179
+
180
  InternVL is built with reference to the code of the following projects: [OpenAI CLIP](https://github.com/openai/CLIP), [Open CLIP](https://github.com/mlfoundations/open_clip), [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark), [EVA](https://github.com/baaivision/EVA/tree/master), [InternImage](https://github.com/OpenGVLab/InternImage), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), [MMSegmentation](https://github.com/open-mmlab/mmsegmentation), [Transformers](https://github.com/huggingface/transformers), [DINOv2](https://github.com/facebookresearch/dinov2), [BLIP-2](https://github.com/salesforce/LAVIS/tree/main/projects/blip2), [Qwen-VL](https://github.com/QwenLM/Qwen-VL/tree/master/eval_mm), and [LLaVA-1.5](https://github.com/haotian-liu/LLaVA). Thanks for their awesome work!