100suping/Qwen2.5-Coder-34B-Instruct-kosql-adapter

This Repo contains LoRA (Low-Rank Adaptation) Adapter for [unsloth/qwen2.5-coder-32b-instruct-bnb-4bit]

The Adapter was trained for improving model's SQL generation capability in Korean question & multi-db context.

This adapter was created through instruction tuning.

Model Details

Model Description

  • Base Model: unsloth/Qwen2.5-Coder-32B-Instruct
  • Task: Instruction Following(Korean)
  • Language: English (or relevant language)
  • Training Data: 100suping/ko-bird-sql-schema, won75/text_to_sql_ko
  • Model type: Causal Language Models.
  • Language(s) (NLP): Multi-Language

How to Get Started with the Model

To use this LoRA adapter, refer to the following code:

Adapter Loading

from transformers import BitsAndBytesConfig

def get_bnb_config(bit=8):
    if bit == 8:
        return BitsAndBytesConfig(load_in_8bit=True)
    else:
        print(f"You put {bit} bit in argument.\nWhatever the number you put in, if it is not 8 then 4bit config would be returned.")
        return BitsAndBytesConfig(load_in_4bit=True)
from unsloth import FastLanguageModel

model_name = "unsloth/Qwen2.5-Coder-32B-Instruct"
adapter_revision = "checkpoint-200" # checkpoint-100 ~ 350, main(which is checkpoint-384)

bnb_config = get_bnb_config(bit=bit)
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_name,
    dtype=None,
    quantization_config=bnb_config,
)
model.load_adapter("100suping/Qwen2.5-Coder-34B-Instruct-kosql-adapter", revision=adapter_revision)

Prompt

GENERAL_QUERY_PREFIX = """๋‹น์‹ ์€ ์‚ฌ์šฉ์ž์˜ ์ž…๋ ฅ์„ MySQL ์ฟผ๋ฆฌ๋ฌธ์œผ๋กœ ๋ฐ”๊พธ์–ด์ฃผ๋Š” ์กฐ์ง์˜ ํŒ€์›์ž…๋‹ˆ๋‹ค.
๋‹น์‹ ์˜ ์ž„๋ฌด๋Š” DB ์ด๋ฆ„ ๊ทธ๋ฆฌ๊ณ  DB๋‚ด ํ…Œ์ด๋ธ”์˜ ๋ฉ”ํƒ€ ์ •๋ณด๊ฐ€ ๋‹ด๊ธด ์•„๋ž˜์˜ (context)๋ฅผ ์ด์šฉํ•ด์„œ ์ฃผ์–ด์ง„ ์งˆ๋ฌธ(user_question)์— ๊ฑธ๋งž๋Š” MySQL ์ฟผ๋ฆฌ๋ฌธ์„ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

(context)
{context}
"""

GENERATE_QUERY_INSTRUCTIONS = """
์ฃผ์–ด์ง„ ์งˆ๋ฌธ(user_question)์— ๋Œ€ํ•ด์„œ ๋ฌธ๋ฒ•์ ์œผ๋กœ ์˜ฌ๋ฐ”๋ฅธ MySQL ์ฟผ๋ฆฌ๋ฌธ์„ ์ž‘์„ฑํ•ด ์ฃผ์„ธ์š”.
"""

Example input

<|im_start|>system
๋‹น์‹ ์€ ์‚ฌ์šฉ์ž์˜ ์ž…๋ ฅ์„ MySQL ์ฟผ๋ฆฌ๋ฌธ์œผ๋กœ ๋ฐ”๊พธ์–ด์ฃผ๋Š” ์กฐ์ง์˜ ํŒ€์›์ž…๋‹ˆ๋‹ค.
๋‹น์‹ ์˜ ์ž„๋ฌด๋Š” DB ์ด๋ฆ„ ๊ทธ๋ฆฌ๊ณ  DB๋‚ด ํ…Œ์ด๋ธ”์˜ ๋ฉ”ํƒ€ ์ •๋ณด๊ฐ€ ๋‹ด๊ธด ์•„๋ž˜์˜ (context)๋ฅผ ์ด์šฉํ•ด์„œ ์ฃผ์–ด์ง„ ์งˆ๋ฌธ(user_question)์— ๊ฑธ๋งž๋Š” MySQL ์ฟผ๋ฆฌ๋ฌธ์„ ์ž‘์„ฑํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค.

(context)
DB: movie_platform
table DDL: CREATE TABLE `movies` ( `movie_id` INTEGER `movie_title` TEXT `movie_release_year` INTEGER `movie_url` TEXT `movie_title_language` TEXT `movie_popularity` INTEGER `movie_image_url` TEXT `director_id` TEXT `director_name` TEXT `director_url` TEXT PRIMARY KEY (movie_id) FOREIGN KEY (user_id) REFERENCES `lists_users`(user_id) FOREIGN KEY (user_id) REFERENCES `lists_users`(user_id) FOREIGN KEY (user_id) REFERENCES `lists`(user_id) FOREIGN KEY (list_id) REFERENCES `lists`(list_id) FOREIGN KEY (user_id) REFERENCES `ratings_users`(user_id) FOREIGN KEY (user_id) REFERENCES `lists_users`(user_id) FOREIGN KEY (movie_id) REFERENCES `movies`(movie_id) );


์ฃผ์–ด์ง„ ์งˆ๋ฌธ(user_question)์— ๋Œ€ํ•ด์„œ ๋ฌธ๋ฒ•์ ์œผ๋กœ ์˜ฌ๋ฐ”๋ฅธ MySQL ์ฟผ๋ฆฌ๋ฌธ์„ ์ž‘์„ฑํ•ด ์ฃผ์„ธ์š”.
<|im_end|>
<|im_start|>user
๊ฐ€์žฅ ์ธ๊ธฐ ์žˆ๋Š” ์˜ํ™”๋Š” ๋ฌด์—‡์ธ๊ฐ€์š”? ๊ทธ ์˜ํ™”๋Š” ์–ธ์ œ ๊ฐœ๋ด‰๋˜์—ˆ๊ณ  ๋ˆ„๊ฐ€ ๊ฐ๋…์ธ๊ฐ€์š”?<|im_end|>
<|im_start|>assistant
```sql
SELECT movie_title, movie_release_year, director_name FROM movies ORDER BY movie_popularity DESC LIMIT 1 ;
```<|im_end|>

Inference - pytorch

messages = [
        {"role": "system", "content": GENERAL_QUERY_PREFIX.format(context=context) + GENERATE_QUERY_INSTRUCTIONS},
        {"role": "user", "content": "user_question: "+ user_question}
    ]


text = tokenizer.apply_chat_template(
        messages,
        tokenize=False,
        add_generation_prompt=True
    )

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=max_new_tokens
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

Inference - LangChain & HuggingFacePipeline

bnb_config = get_bnb_config(bit=bit)

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_name,
    dtype=None,
    quantization_config=bnb_config,
)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=max_new_tokens)
hf_llm = HuggingFacePipeline(pipeline=pipe)

prompt = ChatPromptTemplate.from_messages(
        [
            SystemMessage(
                content=GENERAL_QUERY_PREFIX.format(context=context) + GENERATE_QUERY_INSTRUCTIONS
            ),
            (
                "human",
                "์งˆ๋ฌธ(user_question): {user_question}",
            ),
        ]
    )

chain = prompt | hf_llm

response = chain.invoke({"user_question" : user_question})

Training Details

Training Data

https://huggingface.co./datasets/100suping/ko-bird-sql-schema

  • Naive translation of english quesiton to korean quesiton

https://huggingface.co./datasets/won75/text_to_sql_ko

  • Generated data from 100 seed data

Training Procedure

https://github.com/100suping/train_with_unsloth

Preprocess Functions

def get_conversation_data(examples):
    questions = examples['question']
    schemas =examples['schema']
    sql_queries =examples['SQL']
    convos = []
    for question, schema, sql in zip(questions, schemas, sql_queries):
        conv = [
        {"role": "system", "content": GENERAL_QUERY_PREFIX.format(context=schema) + GENERATE_QUERY_INSTRUCTIONS},
        {"role": "user", "content": question},
        {"role": "assistant", "content": "```sql\n"+sql+";\n```"}
        ]
        convos.append(conv)
    return {"conversation":convos,}

def formatting_prompts_func(examples):
    convos = examples["conversation"]
    texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
    return { "text" : texts, }

Training Hyperparameters

  • Training regime: bf16 mixed-precision
  • Load-in-8bit: True
  • LoRA config:
    • r=16
    • lora_alpha=32
    • lora_dropout=0.0
    • target_modules = "q proj", "k_proj", "v_proj", "o_proj","gate_proj", "up_proj", "down_proj"
    • bias = "none"
    • use_gradient_checkpointing = "unsloth"
    • use_rslora = False
    • loftq_config = None
  • Training Data: 100suping/ko-bird-sql-schema, won75/text_to_sql_ko
  • Max_seq_length: 4096
  • Save_steps: 50
  • Epochs: 2
  • Global_steps: 384
  • Batch_size: 16
  • Gradient_accumulation_steps: 2
  • Learning_rate: 2e-4
  • Warmup_steps: 20

Speeds, Sizes, Times [optional]

  • Device: G-NAHP-80 from EliceCloud(https://elice.io/ko/products/cloud/on-demand)
    • A100 80GB PCle (However somehow if i use more than 60GB, error shows up)
    • CPU 16 vCore
    • Memory 192 GiB
    • Storage 100 GiB
  • Memory-Used(GPU VRAM): ~60GB

For Continuous Instruction-tuning

To use this LoRA adapter, refer to the following code:

from peft import PeftModel

bnb_config = get_bnb_config(bit=bit)

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_name,
    dtype=None,
    quantization_config=bnb_config,
)

model = PeftModel.from_pretrained(model, adapter_path, is_trainable=True)
model = FastLanguageModel.patch_peft_model(model, use_gradient_checkpointing="unsloth")

model.print_trainable_parameters()

Citation

@article{hui2024qwen2,
      title={Qwen2. 5-Coder Technical Report},
      author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others},
      journal={arXiv preprint arXiv:2409.12186},
      year={2024}
}
@article{qwen2,
      title={Qwen2 Technical Report}, 
      author={An Yang and Baosong Yang and Binyuan Hui and Bo Zheng and Bowen Yu and Chang Zhou and Chengpeng Li and Chengyuan Li and Dayiheng Liu and Fei Huang and Guanting Dong and Haoran Wei and Huan Lin and Jialong Tang and Jialin Wang and Jian Yang and Jianhong Tu and Jianwei Zhang and Jianxin Ma and Jin Xu and Jingren Zhou and Jinze Bai and Jinzheng He and Junyang Lin and Kai Dang and Keming Lu and Keqin Chen and Kexin Yang and Mei Li and Mingfeng Xue and Na Ni and Pei Zhang and Peng Wang and Ru Peng and Rui Men and Ruize Gao and Runji Lin and Shijie Wang and Shuai Bai and Sinan Tan and Tianhang Zhu and Tianhao Li and Tianyu Liu and Wenbin Ge and Xiaodong Deng and Xiaohuan Zhou and Xingzhang Ren and Xinyu Zhang and Xipin Wei and Xuancheng Ren and Yang Fan and Yang Yao and Yichang Zhang and Yu Wan and Yunfei Chu and Yuqiong Liu and Zeyu Cui and Zhenru Zhang and Zhihao Fan},
      journal={arXiv preprint arXiv:2407.10671},
      year={2024}
}

Model Card Authors

joonavel[https://github.com/joonavel] from 100suping [https://github.com/100suping]

Framework versions

  • PEFT 0.13.2
Downloads last month
103
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train 100suping/Qwen2.5-Coder-34B-Instruct-kosql-adapter