Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/Llama-3.2-1B-Instruct
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d640525a2dc2a05c_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d640525a2dc2a05c_train_data.json
  type:
    field_input: ''
    field_instruction: post
    field_output: summary
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 2
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: 0x1202/ecae1d40-b1bb-43db-95bd-1c6d3f4a7ec3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 4500
micro_batch_size: 8
mlflow_experiment_name: /tmp/d640525a2dc2a05c_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 512
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 2a12b116-57ac-4702-b880-01a716a1e301
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 2a12b116-57ac-4702-b880-01a716a1e301
warmup_steps: 50
weight_decay: 0.0
xformers_attention: null

ecae1d40-b1bb-43db-95bd-1c6d3f4a7ec3

This model is a fine-tuned version of unsloth/Llama-3.2-1B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1301

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 50
  • training_steps: 3846

Training results

Training Loss Epoch Step Validation Loss
No log 0.0003 1 3.1843
2.2768 0.0390 150 2.2907
2.3128 0.0780 300 2.2574
2.1967 0.1170 450 2.2451
2.2483 0.1560 600 2.2303
2.2865 0.1950 750 2.2190
2.273 0.2341 900 2.2104
2.247 0.2731 1050 2.2039
2.2681 0.3121 1200 2.1944
2.1739 0.3511 1350 2.1862
2.1636 0.3901 1500 2.1807
2.2038 0.4291 1650 2.1739
2.1904 0.4681 1800 2.1677
2.1977 0.5071 1950 2.1621
2.1476 0.5461 2100 2.1584
2.1481 0.5851 2250 2.1553
2.1617 0.6241 2400 2.1505
2.202 0.6632 2550 2.1457
2.2041 0.7022 2700 2.1407
2.1973 0.7412 2850 2.1380
2.1571 0.7802 3000 2.1349
2.2192 0.8192 3150 2.1341
2.1933 0.8582 3300 2.1317
2.1233 0.8972 3450 2.1314
2.1085 0.9362 3600 2.1311
2.1266 0.9752 3750 2.1301

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
33
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for 0x1202/ecae1d40-b1bb-43db-95bd-1c6d3f4a7ec3

Adapter
(382)
this model