--- license: mit language: - en base_model: - MAGAer13/mplug-owl2-llama2-7b --- # DeQA-Score-LoRA-Mix3 DeQA-Score ( [project page](https://depictqa.github.io/deqa-score/) / [codes](https://github.com/zhiyuanyou/DeQA-Score) / [paper](https://arxiv.org/abs/2501.11561) ) model weights LoRA fine-tuned on KonIQ, SPAQ, and KADID datasets. This work is under our [DepictQA project](https://depictqa.github.io/). ## Non-reference IQA Results (PLCC / SRCC) | | Fine-tune | KonIQ | SPAQ | KADID | PIPAL | LIVE-Wild | AGIQA | TID2013 | CSIQ | |--------------|-----------|-----------|----------|----------|----------|-----------|----------|----------|----------| | Q-Align (Baseline) | Fully | 0.945 / 0.938 | 0.933 / 0.931 | 0.935 / 0.934 | 0.409 / 0.420 | 0.887 / 0.883 | 0.788 / 0.733 | 0.829 / 0.808 | 0.876 / 0.845 | | DeQA-Score (Ours) | LoRA | **0.956 / 0.944** | **0.939 / 0.935** | **0.953 / 0.951** | **0.481 / 0.481** | **0.903 / 0.890** | **0.806 / 0.754** | **0.851 / 0.821** | **0.900 / 0.860** | If you find our work useful for your research and applications, please cite using the BibTeX: ```bibtex @article{deqa_score, title={Teaching Large Language Models to Regress Accurate Image Quality Scores using Score Distribution}, author={You, Zhiyuan and Cai, Xin and Gu, Jinjin and Xue, Tianfan and Dong, Chao}, journal={arXiv preprint arXiv:2501.11561}, year={2025}, } ```