--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.83 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co./facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7926 - Accuracy: 0.83 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.0468 | 1.0 | 113 | 2.0109 | 0.41 | | 1.6902 | 2.0 | 226 | 1.6493 | 0.5 | | 1.0179 | 3.0 | 339 | 1.4098 | 0.59 | | 1.1239 | 4.0 | 452 | 1.1319 | 0.67 | | 0.7065 | 5.0 | 565 | 0.9650 | 0.73 | | 0.546 | 6.0 | 678 | 0.9210 | 0.75 | | 0.535 | 7.0 | 791 | 0.7329 | 0.81 | | 0.3793 | 8.0 | 904 | 0.5348 | 0.86 | | 0.6647 | 9.0 | 1017 | 0.6605 | 0.84 | | 0.3996 | 10.0 | 1130 | 0.7797 | 0.83 | | 0.432 | 11.0 | 1243 | 0.7763 | 0.83 | | 0.0538 | 12.0 | 1356 | 0.7716 | 0.84 | | 0.0858 | 13.0 | 1469 | 0.7953 | 0.82 | | 0.3906 | 14.0 | 1582 | 0.7821 | 0.84 | | 0.2496 | 15.0 | 1695 | 0.9718 | 0.83 | | 0.13 | 16.0 | 1808 | 0.7773 | 0.85 | | 0.1103 | 17.0 | 1921 | 0.6670 | 0.88 | | 0.1443 | 18.0 | 2034 | 0.8843 | 0.84 | | 0.0083 | 19.0 | 2147 | 0.7977 | 0.84 | | 0.0086 | 20.0 | 2260 | 0.7926 | 0.83 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.3