--- license: apache-2.0 tags: - moe - frankenmoe - merge - mergekit - lazymergekit - mlabonne/AlphaMonarch-7B - beowolx/CodeNinja-1.0-OpenChat-7B - SanjiWatsuki/Kunoichi-DPO-v2-7B - mlabonne/NeuralDaredevil-7B - HuggingFaceH4/zephyr-7b-beta - mistralai/Mistral-7B-Instruct-v0.2 - teknium/OpenHermes-2.5-Mistral-7B - meta-math/MetaMath-Mistral-7B base_model: - mlabonne/AlphaMonarch-7B - beowolx/CodeNinja-1.0-OpenChat-7B - SanjiWatsuki/Kunoichi-DPO-v2-7B - mlabonne/NeuralDaredevil-7B - HuggingFaceH4/zephyr-7b-beta - mistralai/Mistral-7B-Instruct-v0.2 - teknium/OpenHermes-2.5-Mistral-7B - meta-math/MetaMath-Mistral-7B --- # yk_8x7b_model yk_8x7b_model is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mlabonne/AlphaMonarch-7B](https://huggingface.co./mlabonne/AlphaMonarch-7B) * [beowolx/CodeNinja-1.0-OpenChat-7B](https://huggingface.co./beowolx/CodeNinja-1.0-OpenChat-7B) * [SanjiWatsuki/Kunoichi-DPO-v2-7B](https://huggingface.co./SanjiWatsuki/Kunoichi-DPO-v2-7B) * [mlabonne/NeuralDaredevil-7B](https://huggingface.co./mlabonne/NeuralDaredevil-7B) * [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co./HuggingFaceH4/zephyr-7b-beta) * [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co./mistralai/Mistral-7B-Instruct-v0.2) * [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co./teknium/OpenHermes-2.5-Mistral-7B) * [meta-math/MetaMath-Mistral-7B](https://huggingface.co./meta-math/MetaMath-Mistral-7B) ## 🧩 Configuration ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 dtype: float16 gate_mode: hidden experts: - source_model: mlabonne/AlphaMonarch-7B positive_prompts: - "chat" - "assistant" - "tell me" - "explain" - "I want" - "help" - source_model: beowolx/CodeNinja-1.0-OpenChat-7B positive_prompts: - "code" - "python" - "javascript" - "programming" - "algorithm" - "coding" - source_model: SanjiWatsuki/Kunoichi-DPO-v2-7B positive_prompts: - "storywriting" - "write" - "scene" - "story" - "character" - "creative" - source_model: mlabonne/NeuralDaredevil-7B positive_prompts: - "reason" - "math" - "mathematics" - "solve" - "count" - "logic" - source_model: HuggingFaceH4/zephyr-7b-beta positive_prompts: - "You are an helpful general-purpose assistant." - "assist" - "helpful" - "support" - "guide" - source_model: mistralai/Mistral-7B-Instruct-v0.2 positive_prompts: - "You are helpful assistant." - "aid" - "assist" - "guide" - "support" - source_model: teknium/OpenHermes-2.5-Mistral-7B positive_prompts: - "You are helpful a coding assistant." - "code" - "programming" - "debug" - "scripting" - "coding" - source_model: meta-math/MetaMath-Mistral-7B positive_prompts: - "You are an assistant good at math." - "mathematics" - "calculation" - "problem solving" - "arithmetics" - "math" ``` ## 💻 Usage ```python !pip install -qU transformers bitsandbytes accelerate from transformers import AutoTokenizer import transformers import torch model = "yatinece/yk_8x7b_model" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, ) messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```