import files.
Browse files- README.md +7 -308
- config.json +33 -0
- configuration_RW.py +75 -0
- gptq_model-4bit-128g.safetensors +3 -0
- model.safetensors.index.json +0 -0
- modelling_RW.py +1106 -0
- quantize_config.json +10 -0
- special_tokens_map.json +16 -0
- tokenizer.json +0 -0
- tokenizer_config.json +7 -0
README.md
CHANGED
@@ -1,314 +1,13 @@
|
|
1 |
-
|
2 |
-
datasets:
|
3 |
-
- tiiuae/falcon-refinedweb
|
4 |
-
language:
|
5 |
-
- en
|
6 |
-
- de
|
7 |
-
- es
|
8 |
-
- fr
|
9 |
-
inference: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
This is a 4 bit GPTQ quantized model with auto-gptq with following python code:
|
16 |
-
|
17 |
-
```python
|
18 |
-
from transformers import AutoTokenizer, TextGenerationPipeline
|
19 |
-
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
20 |
-
import logging,torch
|
21 |
-
|
22 |
-
logging.basicConfig(
|
23 |
-
format="%(asctime)s %(levelname)s [%(name)s] %(message)s", level=logging.INFO, datefmt="%Y-%m-%d %H:%M:%S"
|
24 |
-
)
|
25 |
-
|
26 |
-
pretrained_model_dir = "../falcon-40b"
|
27 |
-
quantized_model_dir = "../falcon-40b-gptq"
|
28 |
-
|
29 |
-
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True)
|
30 |
-
examples = [
|
31 |
-
tokenizer(
|
32 |
-
"auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."
|
33 |
-
)
|
34 |
-
]
|
35 |
-
|
36 |
-
quantize_config = BaseQuantizeConfig(
|
37 |
-
bits=4, # quantize model to 4-bit
|
38 |
-
group_size=128, # it is recommended to set the value to 128
|
39 |
-
desc_act=True, # set to False can significantly speed up inference but the perplexity may slightly bad
|
40 |
-
)
|
41 |
-
|
42 |
-
# load un-quantized model, by default, the model will always be loaded into CPU memory
|
43 |
-
model = AutoGPTQForCausalLM.from_pretrained(pretrained_model_dir, quantize_config, trust_remote_code=True, torch_dtype=torch.float16)
|
44 |
-
|
45 |
-
# quantize model, the examples should be list of dict whose keys can only be "input_ids" and "attention_mask"
|
46 |
-
model.quantize(examples)
|
47 |
-
|
48 |
-
# save quantized model using safetensors
|
49 |
-
model.save_quantized(quantized_model_dir, use_safetensors=True)
|
50 |
-
```
|
51 |
-
|
52 |
-
It can be used to further finetune with [Falcontune](https://github.com/wyklq/falcontune) on Nvidia V100 GPU.
|
53 |
-
|
54 |
-
|
55 |
-
# 🚀 Falcon-40B
|
56 |
-
|
57 |
-
**Falcon-40B is a 40B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on 1,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. It is made available under the Apache 2.0 license.**
|
58 |
-
|
59 |
-
*Paper coming soon 😊.*
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
# Call for Proposals : Falcon 40B - World's Top Ranked AI Model Empowers Exceptional Use Cases with Training Compute Power in Call for Proposals
|
64 |
-
|
65 |
-
We get it. AI is everywhere! Is it taking over?
|
66 |
-
|
67 |
-
Before we debate the scant likelihood of a cyborg assassin from the future terminating humanity, let’s get to know the newbie that has soared to top-spot on the leaderboard – Falcon 40B.
|
68 |
-
|
69 |
-
Falcon 40B is the UAE’s and the Middle East’s first home-grown, open-source large language model (LLM) with 40 billion parameters trained on one trillion tokens. The brainchild of the Technology Innovation Institute (TII), Falcon 40B has generated a tremendous amount of global interest and intrigue, but what really sweetens the deal is its transparent, open-source feature.
|
70 |
-
|
71 |
-
TII is now calling for proposals from users worldwide to submit their most creative ideas for Falcon 40B’s deployment – allowing them to share their knowledge, enhance the software, and potentially transform their ideas into reality! Take that, ChatGPT!
|
72 |
-
Worth checking out? Give it a go and see for yourself!
|
73 |
-
|
74 |
-
Submit your proposal today! https://falconllm.tii.ae/call-for-proposal.php
|
75 |
-
|
76 |
-
|
77 |
-
🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost fron HF](https://huggingface.co/blog/falcon)!
|
78 |
-
|
79 |
-
## Why use Falcon-40B?
|
80 |
-
|
81 |
-
* **It is the best open-source model currently available.** Falcon-40B outperforms [LLaMA](https://github.com/facebookresearch/llama), [StableLM](https://github.com/Stability-AI/StableLM), [RedPajama](https://huggingface.co/togethercomputer/RedPajama-INCITE-Base-7B-v0.1), [MPT](https://huggingface.co/mosaicml/mpt-7b), etc. See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
|
82 |
-
* **It features an architecture optimized for inference**, with FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135)) and multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)).
|
83 |
-
* **It is made available under a permissive Apache 2.0 license allowing for commercial use**, without any royalties or restrictions.
|
84 |
-
*
|
85 |
-
⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at [Falcon-40B-Instruct](https://huggingface.co/tiiuae/falcon-40b-instruct).
|
86 |
-
|
87 |
-
💸 **Looking for a smaller, less expensive model?** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) is Falcon-40B's little brother!
|
88 |
-
|
89 |
-
```python
|
90 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
91 |
-
import transformers
|
92 |
-
import torch
|
93 |
-
|
94 |
-
model = "tiiuae/falcon-40b"
|
95 |
-
|
96 |
-
tokenizer = AutoTokenizer.from_pretrained(model)
|
97 |
-
pipeline = transformers.pipeline(
|
98 |
-
"text-generation",
|
99 |
-
model=model,
|
100 |
-
tokenizer=tokenizer,
|
101 |
-
torch_dtype=torch.bfloat16,
|
102 |
-
trust_remote_code=True,
|
103 |
-
device_map="auto",
|
104 |
-
)
|
105 |
-
sequences = pipeline(
|
106 |
-
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
|
107 |
-
max_length=200,
|
108 |
-
do_sample=True,
|
109 |
-
top_k=10,
|
110 |
-
num_return_sequences=1,
|
111 |
-
eos_token_id=tokenizer.eos_token_id,
|
112 |
-
)
|
113 |
-
for seq in sequences:
|
114 |
-
print(f"Result: {seq['generated_text']}")
|
115 |
-
|
116 |
-
```
|
117 |
-
|
118 |
-
💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!**
|
119 |
-
|
120 |
-
For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon).
|
121 |
-
|
122 |
-
You will need **at least 85-100GB of memory** to swiftly run inference with Falcon-40B.
|
123 |
-
|
124 |
-
# Model Card for Falcon-40B
|
125 |
-
|
126 |
-
## Model Details
|
127 |
-
|
128 |
-
### Model Description
|
129 |
-
|
130 |
-
- **Developed by:** [https://www.tii.ae](https://www.tii.ae);
|
131 |
-
- **Model type:** Causal decoder-only;
|
132 |
-
- **Language(s) (NLP):** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
|
133 |
-
- **License:** Apache 2.0 license.
|
134 |
-
|
135 |
-
### Model Source
|
136 |
-
|
137 |
-
- **Paper:** *coming soon*.
|
138 |
-
|
139 |
-
## Uses
|
140 |
-
|
141 |
-
### Direct Use
|
142 |
-
|
143 |
-
Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.)
|
144 |
-
|
145 |
-
### Out-of-Scope Use
|
146 |
-
|
147 |
-
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
|
148 |
-
|
149 |
-
## Bias, Risks, and Limitations
|
150 |
-
|
151 |
-
Falcon-40B is trained mostly on English, German, Spanish, French, with limited capabilities also in in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
|
152 |
-
|
153 |
-
### Recommendations
|
154 |
-
|
155 |
-
We recommend users of Falcon-40B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use.
|
156 |
-
|
157 |
-
## How to Get Started with the Model
|
158 |
-
|
159 |
-
|
160 |
-
```python
|
161 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
162 |
-
import transformers
|
163 |
-
import torch
|
164 |
-
|
165 |
-
model = "tiiuae/falcon-40b"
|
166 |
-
|
167 |
-
tokenizer = AutoTokenizer.from_pretrained(model)
|
168 |
-
pipeline = transformers.pipeline(
|
169 |
-
"text-generation",
|
170 |
-
model=model,
|
171 |
-
tokenizer=tokenizer,
|
172 |
-
torch_dtype=torch.bfloat16,
|
173 |
-
trust_remote_code=True,
|
174 |
-
device_map="auto",
|
175 |
-
)
|
176 |
-
sequences = pipeline(
|
177 |
-
"Girafatron is obsessed with giraffes, the most glorious animal on the face of this Earth. Giraftron believes all other animals are irrelevant when compared to the glorious majesty of the giraffe.\nDaniel: Hello, Girafatron!\nGirafatron:",
|
178 |
-
max_length=200,
|
179 |
-
do_sample=True,
|
180 |
-
top_k=10,
|
181 |
-
num_return_sequences=1,
|
182 |
-
eos_token_id=tokenizer.eos_token_id,
|
183 |
-
)
|
184 |
-
for seq in sequences:
|
185 |
-
print(f"Result: {seq['generated_text']}")
|
186 |
|
187 |
```
|
|
|
|
|
|
|
188 |
|
189 |
-
|
190 |
-
|
191 |
-
### Training Data
|
192 |
-
|
193 |
-
Falcon-40B was trained on 1,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. Significant components from our curated copora were inspired by The Pile ([Gao et al., 2020](https://arxiv.org/abs/2101.00027)).
|
194 |
-
|
195 |
-
| **Data source** | **Fraction** | **Tokens** | **Sources** |
|
196 |
-
|--------------------|--------------|------------|-----------------------------------|
|
197 |
-
| [RefinedWeb-English](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) | 75% | 750B | massive web crawl |
|
198 |
-
| RefinedWeb-Europe | 7% | 70B | European massive web crawl |
|
199 |
-
| Books | 6% | 60B | |
|
200 |
-
| Conversations | 5% | 50B | Reddit, StackOverflow, HackerNews |
|
201 |
-
| Code | 5% | 50B | |
|
202 |
-
| Technical | 2% | 20B | arXiv, PubMed, USPTO, etc. |
|
203 |
-
|
204 |
-
RefinedWeb-Europe is made of the following languages:
|
205 |
-
|
206 |
-
| **Language** | **Fraction of multilingual data** | **Tokens** |
|
207 |
-
|--------------|-----------------------------------|------------|
|
208 |
-
| German | 26% | 18B |
|
209 |
-
| Spanish | 24% | 17B |
|
210 |
-
| French | 23% | 16B |
|
211 |
-
| _Italian_ | 7% | 5B |
|
212 |
-
| _Portuguese_ | 4% | 3B |
|
213 |
-
| _Polish_ | 4% | 3B |
|
214 |
-
| _Dutch_ | 4% | 3B |
|
215 |
-
| _Romanian_ | 3% | 2B |
|
216 |
-
| _Czech_ | 3% | 2B |
|
217 |
-
| _Swedish_ | 2% | 1B |
|
218 |
-
|
219 |
-
|
220 |
-
The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[40B](https://huggingface.co/tiiuae/falcon-40b) tokenizer.
|
221 |
-
|
222 |
-
### Training Procedure
|
223 |
-
|
224 |
-
Falcon-40B was trained on 384 A100 40GB GPUs, using a 3D parallelism strategy (TP=8, PP=4, DP=12) combined with ZeRO.
|
225 |
-
|
226 |
-
#### Training Hyperparameters
|
227 |
-
|
228 |
-
| **Hyperparameter** | **Value** | **Comment** |
|
229 |
-
|--------------------|------------|-------------------------------------------|
|
230 |
-
| Precision | `bfloat16` | |
|
231 |
-
| Optimizer | AdamW | |
|
232 |
-
| Learning rate | 1.85e-4 | 4B tokens warm-up, cosine decay to 1.85e-5 |
|
233 |
-
| Weight decay | 1e-1 | |
|
234 |
-
| Z-loss | 1e-4 | |
|
235 |
-
| Batch size | 1152 | 100B tokens ramp-up |
|
236 |
-
|
237 |
-
|
238 |
-
#### Speeds, Sizes, Times
|
239 |
-
|
240 |
-
Training started in December 2022 and took two months.
|
241 |
-
|
242 |
-
|
243 |
-
## Evaluation
|
244 |
-
|
245 |
-
*Paper coming soon.*
|
246 |
-
|
247 |
-
See the [OpenLLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for early results.
|
248 |
-
|
249 |
-
|
250 |
-
## Technical Specifications
|
251 |
-
|
252 |
-
### Model Architecture and Objective
|
253 |
-
|
254 |
-
Falcon-40B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token).
|
255 |
-
|
256 |
-
The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences:
|
257 |
-
|
258 |
-
* **Positionnal embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864));
|
259 |
-
* **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention ([Dao et al., 2022](https://arxiv.org/abs/2205.14135));
|
260 |
-
* **Decoder-block:** parallel attention/MLP with a two layer norms.
|
261 |
-
|
262 |
-
For multiquery, we are using an internal variant which uses independent key and values per tensor parallel degree.
|
263 |
-
|
264 |
-
| **Hyperparameter** | **Value** | **Comment** |
|
265 |
-
|--------------------|-----------|----------------------------------------|
|
266 |
-
| Layers | 60 | |
|
267 |
-
| `d_model` | 8192 | |
|
268 |
-
| `head_dim` | 64 | Reduced to optimise for FlashAttention |
|
269 |
-
| Vocabulary | 65024 | |
|
270 |
-
| Sequence length | 2048 | |
|
271 |
-
|
272 |
-
### Compute Infrastructure
|
273 |
-
|
274 |
-
#### Hardware
|
275 |
-
|
276 |
-
Falcon-40B was trained on AWS SageMaker, on 384 A100 40GB GPUs in P4d instances.
|
277 |
-
|
278 |
-
#### Software
|
279 |
-
|
280 |
-
Falcon-40B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO and high-performance Triton kernels (FlashAttention, etc.)
|
281 |
-
|
282 |
-
|
283 |
-
## Citation
|
284 |
-
|
285 |
-
*Paper coming soon* 😊. In the meanwhile, you can use the following information to cite:
|
286 |
-
```
|
287 |
-
@article{falcon40b,
|
288 |
-
title={{Falcon-40B}: an open large language model with state-of-the-art performance},
|
289 |
-
author={Almazrouei, Ebtesam and Alobeidli, Hamza and Alshamsi, Abdulaziz and Cappelli, Alessandro and Cojocaru, Ruxandra and Debbah, Merouane and Goffinet, Etienne and Heslow, Daniel and Launay, Julien and Malartic, Quentin and Noune, Badreddine and Pannier, Baptiste and Penedo, Guilherme},
|
290 |
-
year={2023}
|
291 |
-
}
|
292 |
-
```
|
293 |
-
|
294 |
-
To learn more about the pretraining dataset, see the 📓 [RefinedWeb paper](https://arxiv.org/abs/2306.01116).
|
295 |
-
|
296 |
-
```
|
297 |
-
@article{refinedweb,
|
298 |
-
title={The {R}efined{W}eb dataset for {F}alcon {LLM}: outperforming curated corpora with web data, and web data only},
|
299 |
-
author={Guilherme Penedo and Quentin Malartic and Daniel Hesslow and Ruxandra Cojocaru and Alessandro Cappelli and Hamza Alobeidli and Baptiste Pannier and Ebtesam Almazrouei and Julien Launay},
|
300 |
-
journal={arXiv preprint arXiv:2306.01116},
|
301 |
-
eprint={2306.01116},
|
302 |
-
eprinttype = {arXiv},
|
303 |
-
url={https://arxiv.org/abs/2306.01116},
|
304 |
-
year={2023}
|
305 |
-
}
|
306 |
```
|
307 |
|
308 |
-
|
309 |
-
## License
|
310 |
-
|
311 |
-
Falcon-40B is made available under the Apache 2.0 license.
|
312 |
-
|
313 |
-
## Contact
|
314 |
|
|
1 |
+
Strict copy of https://huggingface.co/tiiuae/falcon-40b but quantized with GPTQ (on wikitext-2, 4bits, groupsize=128).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
Intended to be used with https://github.com/huggingface/text-generation-inference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
```
|
6 |
+
model=huggingface/falcon-40b-gptq
|
7 |
+
num_shard=2
|
8 |
+
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
9 |
|
10 |
+
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.8 --model-id $model --num-shard $num_shard --quantize gptq
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
```
|
12 |
|
13 |
+
For full configuration and usage outside docker, please refer to https://github.com/huggingface/text-generation-inference
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../falcon-40b",
|
3 |
+
"alibi": false,
|
4 |
+
"apply_residual_connection_post_layernorm": false,
|
5 |
+
"architectures": [
|
6 |
+
"RWForCausalLM"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_RW.RWConfig",
|
11 |
+
"AutoModel": "modelling_RW.RWModel",
|
12 |
+
"AutoModelForCausalLM": "modelling_RW.RWForCausalLM",
|
13 |
+
"AutoModelForQuestionAnswering": "modelling_RW.RWForQuestionAnswering",
|
14 |
+
"AutoModelForSequenceClassification": "modelling_RW.RWForSequenceClassification",
|
15 |
+
"AutoModelForTokenClassification": "modelling_RW.RWForTokenClassification"
|
16 |
+
},
|
17 |
+
"bias": false,
|
18 |
+
"bos_token_id": 11,
|
19 |
+
"eos_token_id": 11,
|
20 |
+
"hidden_dropout": 0.0,
|
21 |
+
"hidden_size": 8192,
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"layer_norm_epsilon": 1e-05,
|
24 |
+
"model_type": "RefinedWeb",
|
25 |
+
"n_head": 128,
|
26 |
+
"n_head_kv": 8,
|
27 |
+
"n_layer": 60,
|
28 |
+
"parallel_attn": true,
|
29 |
+
"torch_dtype": "float16",
|
30 |
+
"transformers_version": "4.30.2",
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 65024
|
33 |
+
}
|
configuration_RW.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Bloom configuration"""
|
16 |
+
from transformers.configuration_utils import PretrainedConfig
|
17 |
+
from transformers.utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
class RWConfig(PretrainedConfig):
|
24 |
+
model_type = "RefinedWeb"
|
25 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
26 |
+
attribute_map = {
|
27 |
+
"num_hidden_layers": "n_layer",
|
28 |
+
"num_attention_heads": "n_head",
|
29 |
+
}
|
30 |
+
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
vocab_size=250880,
|
34 |
+
hidden_size=64,
|
35 |
+
n_layer=2,
|
36 |
+
n_head=8,
|
37 |
+
layer_norm_epsilon=1e-5,
|
38 |
+
initializer_range=0.02,
|
39 |
+
use_cache=True,
|
40 |
+
bos_token_id=1,
|
41 |
+
eos_token_id=2,
|
42 |
+
apply_residual_connection_post_layernorm=False,
|
43 |
+
hidden_dropout=0.0,
|
44 |
+
attention_dropout=0.0,
|
45 |
+
n_head_kv=None,
|
46 |
+
alibi=False,
|
47 |
+
**kwargs,
|
48 |
+
):
|
49 |
+
self.vocab_size = vocab_size
|
50 |
+
# Backward compatibility with n_embed kwarg
|
51 |
+
n_embed = kwargs.pop("n_embed", None)
|
52 |
+
self.hidden_size = hidden_size if n_embed is None else n_embed
|
53 |
+
self.n_layer = n_layer
|
54 |
+
self.n_head = n_head
|
55 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
56 |
+
self.initializer_range = initializer_range
|
57 |
+
self.use_cache = use_cache
|
58 |
+
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
|
59 |
+
self.hidden_dropout = hidden_dropout
|
60 |
+
self.attention_dropout = attention_dropout
|
61 |
+
|
62 |
+
self.bos_token_id = bos_token_id
|
63 |
+
self.eos_token_id = eos_token_id
|
64 |
+
self.n_head_kv = n_head if n_head_kv is None else n_head_kv
|
65 |
+
self.alibi = alibi
|
66 |
+
|
67 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
68 |
+
|
69 |
+
@property
|
70 |
+
def head_dim(self):
|
71 |
+
return self.hidden_size // self.n_head
|
72 |
+
|
73 |
+
@property
|
74 |
+
def rotary(self):
|
75 |
+
return not self.alibi
|
gptq_model-4bit-128g.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a66bcfe1ed64e11ea7ed21052c5e2a9e529be603290b8f16ffcd8402449ebda4
|
3 |
+
size 23336188912
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
modelling_RW.py
ADDED
@@ -0,0 +1,1106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# port of models described in RW
|
2 |
+
# We use the bloom model as a starting point for these model.
|
3 |
+
# Please refer to the bloom models for usage instructions.
|
4 |
+
|
5 |
+
import math
|
6 |
+
import warnings
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
|
13 |
+
from torch.nn import functional as F
|
14 |
+
|
15 |
+
from transformers.modeling_outputs import (
|
16 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
17 |
+
CausalLMOutputWithCrossAttentions,
|
18 |
+
QuestionAnsweringModelOutput,
|
19 |
+
SequenceClassifierOutputWithPast,
|
20 |
+
TokenClassifierOutput,
|
21 |
+
)
|
22 |
+
from transformers.modeling_utils import PreTrainedModel
|
23 |
+
from transformers.utils import logging
|
24 |
+
from .configuration_RW import RWConfig
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
|
29 |
+
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
|
30 |
+
class Linear(nn.Linear):
|
31 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
32 |
+
ret = input @ self.weight.T
|
33 |
+
if self.bias is None:
|
34 |
+
return ret
|
35 |
+
else:
|
36 |
+
return ret + self.bias
|
37 |
+
|
38 |
+
|
39 |
+
from einops import rearrange
|
40 |
+
|
41 |
+
# rotary pos emb helpers (torch.jit.script does not seem to support staticmethod...)
|
42 |
+
def rotate_half(x):
|
43 |
+
x1, x2 = x[..., : x.shape[-1] // 2], x[..., x.shape[-1] // 2 :]
|
44 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in torch < 1.8.0
|
45 |
+
|
46 |
+
|
47 |
+
class RotaryEmbedding(torch.nn.Module):
|
48 |
+
"""Implementation of RotaryEmbedding from GPT-NeoX.
|
49 |
+
This implementation is design to operate on queries and keys that are compatible with
|
50 |
+
[batch_size, n_heads_per_partition, seq_len, head_dim] (e.g. MinGPTAttention format).
|
51 |
+
"""
|
52 |
+
|
53 |
+
def __init__(
|
54 |
+
self,
|
55 |
+
head_dim: int,
|
56 |
+
base=10000,
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, head_dim, 2).float() / head_dim))
|
60 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
61 |
+
self.head_dim = head_dim
|
62 |
+
self.seq_len_cached = None
|
63 |
+
self.batch_size_cached = None
|
64 |
+
self.cos_cached: torch.Tensor | None = None
|
65 |
+
self.sin_cached: torch.Tensor | None = None
|
66 |
+
|
67 |
+
def cos_sin(
|
68 |
+
self,
|
69 |
+
seq_len: int,
|
70 |
+
device="cuda",
|
71 |
+
dtype=torch.bfloat16,
|
72 |
+
) -> torch.Tensor:
|
73 |
+
if seq_len != self.seq_len_cached:
|
74 |
+
self.seq_len_cached = seq_len
|
75 |
+
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
|
76 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
77 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(device)
|
78 |
+
|
79 |
+
if dtype in [torch.float16, torch.bfloat16]:
|
80 |
+
emb = emb.float()
|
81 |
+
|
82 |
+
self.cos_cached = emb.cos()[None, :, :]
|
83 |
+
self.sin_cached = emb.sin()[None, :, :]
|
84 |
+
|
85 |
+
self.cos_cached = self.cos_cached.type(dtype)
|
86 |
+
self.sin_cached = self.sin_cached.type(dtype)
|
87 |
+
|
88 |
+
return self.cos_cached, self.sin_cached
|
89 |
+
|
90 |
+
def forward(self, q, k):
|
91 |
+
batch, seq_len, head_dim = q.shape
|
92 |
+
cos, sin = self.cos_sin(seq_len, q.device)
|
93 |
+
return (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
94 |
+
|
95 |
+
|
96 |
+
def _make_causal_mask(
|
97 |
+
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
98 |
+
) -> torch.BoolTensor:
|
99 |
+
batch_size, target_length = input_ids_shape
|
100 |
+
mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
|
101 |
+
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
102 |
+
seq_ids = torch.arange(target_length, device=device)
|
103 |
+
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
104 |
+
|
105 |
+
if past_key_values_length > 0:
|
106 |
+
mask[:, :past_key_values_length] = False
|
107 |
+
|
108 |
+
expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length)
|
109 |
+
return expanded_mask
|
110 |
+
|
111 |
+
|
112 |
+
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
113 |
+
batch_size, src_length = mask.shape
|
114 |
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
115 |
+
|
116 |
+
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
117 |
+
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
|
118 |
+
|
119 |
+
|
120 |
+
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
|
121 |
+
batch_size, seq_length = attention_mask.shape
|
122 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
123 |
+
base = torch.tensor(
|
124 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
125 |
+
)
|
126 |
+
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
|
127 |
+
slopes = torch.pow(base, powers)
|
128 |
+
|
129 |
+
if closest_power_of_2 != num_heads:
|
130 |
+
extra_base = torch.tensor(
|
131 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
|
132 |
+
)
|
133 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
134 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
|
135 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
136 |
+
|
137 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
138 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
139 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
140 |
+
# => the query_length dimension will then be broadcasted correctly
|
141 |
+
# This is more or less identical to T5's relative position bias:
|
142 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
143 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
144 |
+
alibi = slopes[..., None].bfloat16() * arange_tensor
|
145 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
146 |
+
|
147 |
+
|
148 |
+
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
|
149 |
+
out = F.dropout(x, p=prob, training=training)
|
150 |
+
out = residual + out
|
151 |
+
return out
|
152 |
+
|
153 |
+
|
154 |
+
class Attention(nn.Module):
|
155 |
+
def __init__(self, config: RWConfig):
|
156 |
+
super().__init__()
|
157 |
+
|
158 |
+
self.hidden_size = config.hidden_size
|
159 |
+
self.num_heads = config.n_head
|
160 |
+
self.head_dim = self.hidden_size // self.num_heads
|
161 |
+
self.split_size = self.hidden_size
|
162 |
+
self.hidden_dropout = config.hidden_dropout
|
163 |
+
|
164 |
+
if self.head_dim * self.num_heads != self.hidden_size:
|
165 |
+
raise ValueError(
|
166 |
+
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
|
167 |
+
f" {self.num_heads})."
|
168 |
+
)
|
169 |
+
|
170 |
+
self.maybe_rotary = RotaryEmbedding(config.head_dim) if config.rotary else lambda q, k: (q, k)
|
171 |
+
|
172 |
+
# Layer-wise attention scaling
|
173 |
+
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
|
174 |
+
self.beta = self.inv_norm_factor
|
175 |
+
|
176 |
+
self.query_key_value = Linear(
|
177 |
+
self.hidden_size,
|
178 |
+
(config.n_head_kv * 2 + config.n_head) * self.head_dim,
|
179 |
+
bias=config.bias,
|
180 |
+
)
|
181 |
+
self.dense = Linear(self.hidden_size, self.hidden_size, bias=config.bias)
|
182 |
+
self.attention_dropout = nn.Dropout(config.attention_dropout)
|
183 |
+
self.num_kv = config.n_head_kv
|
184 |
+
|
185 |
+
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
186 |
+
"""
|
187 |
+
Split the last dimension into (num_heads, head_dim), results share same memory
|
188 |
+
storage as `fused_qkv`
|
189 |
+
|
190 |
+
Args:
|
191 |
+
fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim]
|
192 |
+
|
193 |
+
Returns:
|
194 |
+
query: [batch_size, seq_length, num_heads, head_dim]
|
195 |
+
key: [batch_size, seq_length, num_heads, head_dim]
|
196 |
+
value: [batch_size, seq_length, num_heads, head_dim]
|
197 |
+
"""
|
198 |
+
batch, seq_len, _ = fused_qkv.shape
|
199 |
+
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv + 2, 64)
|
200 |
+
q = qkv[:, :, :, :-2]
|
201 |
+
k = qkv[:, :, :, [-2]]
|
202 |
+
v = qkv[:, :, :, [-1]]
|
203 |
+
k = torch.broadcast_to(k, q.shape)
|
204 |
+
v = torch.broadcast_to(v, q.shape)
|
205 |
+
|
206 |
+
q, k, v = [
|
207 |
+
rearrange(
|
208 |
+
x,
|
209 |
+
"batch seq_len group num_heads head_dim ->\
|
210 |
+
batch seq_len (group num_heads) head_dim",
|
211 |
+
head_dim=self.head_dim,
|
212 |
+
)
|
213 |
+
for x in [q, k, v]
|
214 |
+
]
|
215 |
+
return q, k, v
|
216 |
+
|
217 |
+
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
|
218 |
+
"""
|
219 |
+
Merge heads together over the last dimenstion
|
220 |
+
|
221 |
+
Args:
|
222 |
+
x: (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim]
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
|
226 |
+
"""
|
227 |
+
# What we want to achieve is:
|
228 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
|
229 |
+
batch_size_and_num_heads, seq_length, _ = x.shape
|
230 |
+
batch_size = batch_size_and_num_heads // self.num_heads
|
231 |
+
|
232 |
+
# First view to decompose the batch size
|
233 |
+
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
|
234 |
+
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
|
235 |
+
|
236 |
+
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
|
237 |
+
x = x.permute(0, 2, 1, 3)
|
238 |
+
|
239 |
+
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
|
240 |
+
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
|
241 |
+
|
242 |
+
def forward(
|
243 |
+
self,
|
244 |
+
hidden_states: torch.Tensor,
|
245 |
+
alibi: torch.Tensor,
|
246 |
+
attention_mask: torch.Tensor,
|
247 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
248 |
+
head_mask: Optional[torch.Tensor] = None,
|
249 |
+
use_cache: bool = False,
|
250 |
+
output_attentions: bool = False,
|
251 |
+
):
|
252 |
+
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
|
253 |
+
|
254 |
+
# 3 x [batch_size, seq_length, num_heads, head_dim]
|
255 |
+
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
|
256 |
+
|
257 |
+
batch_size, q_length, _, _ = query_layer.shape
|
258 |
+
|
259 |
+
query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
260 |
+
key_layer = key_layer.transpose(1, 2).reshape(
|
261 |
+
batch_size * self.num_heads,
|
262 |
+
q_length,
|
263 |
+
self.head_dim,
|
264 |
+
)
|
265 |
+
value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim)
|
266 |
+
|
267 |
+
query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
|
268 |
+
|
269 |
+
if layer_past is not None:
|
270 |
+
past_key, past_value = layer_past
|
271 |
+
# concatenate along seq_length dimension:
|
272 |
+
# - key: [batch_size * self.num_heads, head_dim, kv_length]
|
273 |
+
# - value: [batch_size * self.num_heads, kv_length, head_dim]
|
274 |
+
key_layer = torch.cat((past_key, key_layer), dim=1)
|
275 |
+
value_layer = torch.cat((past_value, value_layer), dim=1)
|
276 |
+
|
277 |
+
_, kv_length, _ = key_layer.shape
|
278 |
+
|
279 |
+
if use_cache is True:
|
280 |
+
present = (key_layer, value_layer)
|
281 |
+
else:
|
282 |
+
present = None
|
283 |
+
|
284 |
+
if alibi is None:
|
285 |
+
query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
286 |
+
key_layer_ = key_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
287 |
+
value_layer_ = value_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
|
288 |
+
|
289 |
+
attn_output = F.scaled_dot_product_attention(
|
290 |
+
query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
|
291 |
+
)
|
292 |
+
|
293 |
+
x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
|
294 |
+
x = x.permute(0, 2, 1, 3)
|
295 |
+
attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim)
|
296 |
+
|
297 |
+
output_tensor = self.dense(attn_output)
|
298 |
+
|
299 |
+
outputs = (output_tensor, present)
|
300 |
+
assert not output_attentions # not supported.
|
301 |
+
return outputs
|
302 |
+
else:
|
303 |
+
attention_mask_float = (attention_mask * 1.0).masked_fill(attention_mask, -1e9).to(torch.bfloat16)
|
304 |
+
matmul_result = query_layer @ key_layer.transpose(-1, -2)
|
305 |
+
|
306 |
+
# change view to [batch_size, num_heads, q_length, kv_length]
|
307 |
+
attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
|
308 |
+
|
309 |
+
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
310 |
+
input_dtype = attention_scores.dtype
|
311 |
+
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
|
312 |
+
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
|
313 |
+
attention_scores = attention_scores.to(torch.float32)
|
314 |
+
# attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
|
315 |
+
attention_probs = F.softmax(
|
316 |
+
(attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)) * self.inv_norm_factor
|
317 |
+
+ attention_mask_float,
|
318 |
+
dim=-1,
|
319 |
+
dtype=hidden_states.dtype,
|
320 |
+
)
|
321 |
+
# [batch_size, num_heads, q_length, kv_length]
|
322 |
+
attention_probs = self.attention_dropout(attention_probs)
|
323 |
+
|
324 |
+
if head_mask is not None:
|
325 |
+
attention_probs = attention_probs * head_mask
|
326 |
+
|
327 |
+
# change view [batch_size x num_heads, q_length, kv_length]
|
328 |
+
attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length)
|
329 |
+
|
330 |
+
# matmul: [batch_size * num_heads, q_length, head_dim]
|
331 |
+
context_layer = attention_probs_reshaped @ value_layer
|
332 |
+
|
333 |
+
# change view [batch_size, num_heads, q_length, head_dim]
|
334 |
+
context_layer = self._merge_heads(context_layer)
|
335 |
+
|
336 |
+
output_tensor = self.dense(context_layer)
|
337 |
+
|
338 |
+
outputs = (output_tensor, present)
|
339 |
+
if output_attentions:
|
340 |
+
outputs += (attention_probs,)
|
341 |
+
|
342 |
+
return outputs
|
343 |
+
|
344 |
+
|
345 |
+
class MLP(nn.Module):
|
346 |
+
def __init__(self, config: RWConfig):
|
347 |
+
super().__init__()
|
348 |
+
hidden_size = config.hidden_size
|
349 |
+
|
350 |
+
self.dense_h_to_4h = Linear(hidden_size, 4 * hidden_size, bias=config.bias)
|
351 |
+
self.act = nn.GELU()
|
352 |
+
self.dense_4h_to_h = Linear(4 * hidden_size, hidden_size, bias=config.bias)
|
353 |
+
self.hidden_dropout = config.hidden_dropout
|
354 |
+
|
355 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
356 |
+
x = self.act(self.dense_h_to_4h(x))
|
357 |
+
x = self.dense_4h_to_h(x)
|
358 |
+
return x
|
359 |
+
|
360 |
+
|
361 |
+
class DecoderLayer(nn.Module):
|
362 |
+
def __init__(self, config: RWConfig):
|
363 |
+
super().__init__()
|
364 |
+
hidden_size = config.hidden_size
|
365 |
+
|
366 |
+
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
367 |
+
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
368 |
+
|
369 |
+
self.num_heads = config.n_head
|
370 |
+
self.self_attention = Attention(config)
|
371 |
+
|
372 |
+
self.mlp = MLP(config)
|
373 |
+
|
374 |
+
self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
|
375 |
+
self.hidden_dropout = config.hidden_dropout
|
376 |
+
|
377 |
+
self.config = config
|
378 |
+
|
379 |
+
def forward(
|
380 |
+
self,
|
381 |
+
hidden_states: torch.Tensor,
|
382 |
+
alibi: torch.Tensor,
|
383 |
+
attention_mask: torch.Tensor,
|
384 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
385 |
+
head_mask: Optional[torch.Tensor] = None,
|
386 |
+
use_cache: bool = False,
|
387 |
+
output_attentions: bool = False,
|
388 |
+
):
|
389 |
+
|
390 |
+
ln_attn = self.ln_attn(hidden_states)
|
391 |
+
ln_mlp = self.ln_mlp(hidden_states)
|
392 |
+
|
393 |
+
residual = hidden_states
|
394 |
+
|
395 |
+
# Self attention.
|
396 |
+
attn_outputs = self.self_attention(
|
397 |
+
ln_attn,
|
398 |
+
layer_past=layer_past,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
alibi=alibi,
|
401 |
+
head_mask=head_mask,
|
402 |
+
use_cache=use_cache,
|
403 |
+
output_attentions=output_attentions,
|
404 |
+
)
|
405 |
+
|
406 |
+
attention_output = attn_outputs[0]
|
407 |
+
|
408 |
+
outputs = attn_outputs[1:]
|
409 |
+
|
410 |
+
# MLP.
|
411 |
+
mlp_output = self.mlp(ln_mlp)
|
412 |
+
|
413 |
+
output = dropout_add(
|
414 |
+
mlp_output + attention_output, residual, self.config.hidden_dropout, training=self.training
|
415 |
+
)
|
416 |
+
|
417 |
+
if use_cache:
|
418 |
+
outputs = (output,) + outputs
|
419 |
+
else:
|
420 |
+
outputs = (output,) + outputs[1:]
|
421 |
+
|
422 |
+
return outputs # hidden_states, present, attentions
|
423 |
+
|
424 |
+
|
425 |
+
class RWPreTrainedModel(PreTrainedModel):
|
426 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
427 |
+
"""
|
428 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
429 |
+
models.
|
430 |
+
"""
|
431 |
+
|
432 |
+
config_class = RWConfig
|
433 |
+
base_model_prefix = "transformer"
|
434 |
+
supports_gradient_checkpointing = True
|
435 |
+
_no_split_modules = ["DecoderLayer"]
|
436 |
+
|
437 |
+
def __init__(self, *inputs, **kwargs):
|
438 |
+
super().__init__(*inputs, **kwargs)
|
439 |
+
|
440 |
+
def _init_weights(self, module: nn.Module):
|
441 |
+
"""Initialize the weights."""
|
442 |
+
if isinstance(module, nn.Linear) or isinstance(module, Linear):
|
443 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
444 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
445 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
446 |
+
if module.bias is not None:
|
447 |
+
module.bias.data.zero_()
|
448 |
+
elif isinstance(module, nn.Embedding):
|
449 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
450 |
+
if module.padding_idx is not None:
|
451 |
+
module.weight.data[module.padding_idx].zero_()
|
452 |
+
elif isinstance(module, LayerNorm):
|
453 |
+
module.bias.data.zero_()
|
454 |
+
module.weight.data.fill_(1.0)
|
455 |
+
|
456 |
+
def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False):
|
457 |
+
if isinstance(module, RWModel):
|
458 |
+
module.gradient_checkpointing = value
|
459 |
+
|
460 |
+
@staticmethod
|
461 |
+
def _convert_to_standard_cache(
|
462 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int
|
463 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
464 |
+
"""
|
465 |
+
Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size,
|
466 |
+
num_heads, ...]))
|
467 |
+
"""
|
468 |
+
batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
469 |
+
num_heads = batch_size_times_num_heads // batch_size
|
470 |
+
# key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length]
|
471 |
+
# value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim]
|
472 |
+
return tuple(
|
473 |
+
(
|
474 |
+
layer_past[0].view(batch_size, num_heads, head_dim, seq_length),
|
475 |
+
layer_past[1].view(batch_size, num_heads, seq_length, head_dim),
|
476 |
+
)
|
477 |
+
for layer_past in past_key_value
|
478 |
+
)
|
479 |
+
|
480 |
+
@staticmethod
|
481 |
+
def _convert_to_rw_cache(
|
482 |
+
past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]]
|
483 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]:
|
484 |
+
batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape
|
485 |
+
batch_size_times_num_heads = batch_size * num_heads
|
486 |
+
# key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length]
|
487 |
+
# value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim]
|
488 |
+
return tuple(
|
489 |
+
(
|
490 |
+
layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length),
|
491 |
+
layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim),
|
492 |
+
)
|
493 |
+
for layer_past in past_key_value
|
494 |
+
)
|
495 |
+
|
496 |
+
|
497 |
+
class RWModel(RWPreTrainedModel):
|
498 |
+
def __init__(self, config: RWConfig):
|
499 |
+
super().__init__(config)
|
500 |
+
|
501 |
+
self.embed_dim = config.hidden_size
|
502 |
+
self.num_heads = config.n_head
|
503 |
+
self.alibi = config.alibi
|
504 |
+
|
505 |
+
# Embedding + LN Embedding
|
506 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
|
507 |
+
|
508 |
+
# Transformer blocks
|
509 |
+
self.h = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
510 |
+
|
511 |
+
# Final Layer Norm
|
512 |
+
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
513 |
+
|
514 |
+
self.gradient_checkpointing = False
|
515 |
+
|
516 |
+
# Initialize weights and apply final processing
|
517 |
+
self.post_init()
|
518 |
+
|
519 |
+
def get_input_embeddings(self):
|
520 |
+
return self.word_embeddings
|
521 |
+
|
522 |
+
def _prepare_attn_mask(
|
523 |
+
self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
524 |
+
) -> torch.BoolTensor:
|
525 |
+
# create causal mask
|
526 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
527 |
+
combined_attention_mask = None
|
528 |
+
device = attention_mask.device
|
529 |
+
_, src_length = input_shape
|
530 |
+
|
531 |
+
if src_length > 1:
|
532 |
+
combined_attention_mask = _make_causal_mask(
|
533 |
+
input_shape, device=device, past_key_values_length=past_key_values_length
|
534 |
+
)
|
535 |
+
|
536 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
537 |
+
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
|
538 |
+
combined_attention_mask = (
|
539 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
540 |
+
)
|
541 |
+
|
542 |
+
return combined_attention_mask
|
543 |
+
|
544 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
545 |
+
self.word_embeddings = new_embeddings
|
546 |
+
|
547 |
+
def forward(
|
548 |
+
self,
|
549 |
+
input_ids: Optional[torch.LongTensor] = None,
|
550 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
551 |
+
attention_mask: Optional[torch.Tensor] = None,
|
552 |
+
head_mask: Optional[torch.LongTensor] = None,
|
553 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
554 |
+
use_cache: Optional[bool] = None,
|
555 |
+
output_attentions: Optional[bool] = None,
|
556 |
+
output_hidden_states: Optional[bool] = None,
|
557 |
+
return_dict: Optional[bool] = None,
|
558 |
+
**deprecated_arguments,
|
559 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
560 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
561 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
562 |
+
warnings.warn(
|
563 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
564 |
+
" passing `position_ids`.",
|
565 |
+
FutureWarning,
|
566 |
+
)
|
567 |
+
if len(deprecated_arguments) > 0:
|
568 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
569 |
+
|
570 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
571 |
+
output_hidden_states = (
|
572 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
573 |
+
)
|
574 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
575 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
576 |
+
|
577 |
+
if input_ids is not None and inputs_embeds is not None:
|
578 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
579 |
+
elif input_ids is not None:
|
580 |
+
batch_size, seq_length = input_ids.shape
|
581 |
+
elif inputs_embeds is not None:
|
582 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
583 |
+
else:
|
584 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
585 |
+
|
586 |
+
if past_key_values is None:
|
587 |
+
past_key_values = tuple([None] * len(self.h))
|
588 |
+
|
589 |
+
# Prepare head mask if needed
|
590 |
+
# 1.0 in head_mask indicate we keep the head
|
591 |
+
# attention_probs has shape batch_size x num_heads x N x N
|
592 |
+
# head_mask has shape n_layer x batch x num_heads x N x N
|
593 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
594 |
+
|
595 |
+
if inputs_embeds is None:
|
596 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
597 |
+
|
598 |
+
hidden_states = inputs_embeds
|
599 |
+
|
600 |
+
presents = () if use_cache else None
|
601 |
+
all_self_attentions = () if output_attentions else None
|
602 |
+
all_hidden_states = () if output_hidden_states else None
|
603 |
+
|
604 |
+
# Compute alibi tensor: check build_alibi_tensor documentation
|
605 |
+
seq_length_with_past = seq_length
|
606 |
+
past_key_values_length = 0
|
607 |
+
if past_key_values[0] is not None:
|
608 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
609 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
610 |
+
if attention_mask is None:
|
611 |
+
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
612 |
+
else:
|
613 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
614 |
+
|
615 |
+
if self.alibi:
|
616 |
+
alibi = build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype)
|
617 |
+
else:
|
618 |
+
alibi = None
|
619 |
+
|
620 |
+
causal_mask = self._prepare_attn_mask(
|
621 |
+
attention_mask,
|
622 |
+
input_shape=(batch_size, seq_length),
|
623 |
+
past_key_values_length=past_key_values_length,
|
624 |
+
)
|
625 |
+
|
626 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
627 |
+
|
628 |
+
if output_hidden_states:
|
629 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
630 |
+
|
631 |
+
if self.gradient_checkpointing and self.training:
|
632 |
+
|
633 |
+
if use_cache:
|
634 |
+
logger.warning(
|
635 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
636 |
+
)
|
637 |
+
use_cache = False
|
638 |
+
|
639 |
+
def create_custom_forward(module):
|
640 |
+
def custom_forward(*inputs):
|
641 |
+
# None for past_key_value
|
642 |
+
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
643 |
+
|
644 |
+
return custom_forward
|
645 |
+
|
646 |
+
outputs = torch.utils.checkpoint.checkpoint(
|
647 |
+
create_custom_forward(block),
|
648 |
+
hidden_states,
|
649 |
+
alibi,
|
650 |
+
causal_mask,
|
651 |
+
head_mask[i],
|
652 |
+
)
|
653 |
+
else:
|
654 |
+
outputs = block(
|
655 |
+
hidden_states,
|
656 |
+
layer_past=layer_past,
|
657 |
+
attention_mask=causal_mask,
|
658 |
+
head_mask=head_mask[i],
|
659 |
+
use_cache=use_cache,
|
660 |
+
output_attentions=output_attentions,
|
661 |
+
alibi=alibi,
|
662 |
+
)
|
663 |
+
|
664 |
+
hidden_states = outputs[0]
|
665 |
+
if use_cache is True:
|
666 |
+
presents = presents + (outputs[1],)
|
667 |
+
|
668 |
+
if output_attentions:
|
669 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
670 |
+
|
671 |
+
# Add last hidden state
|
672 |
+
hidden_states = self.ln_f(hidden_states)
|
673 |
+
|
674 |
+
if output_hidden_states:
|
675 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
676 |
+
|
677 |
+
if not return_dict:
|
678 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
679 |
+
|
680 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
681 |
+
last_hidden_state=hidden_states,
|
682 |
+
past_key_values=presents,
|
683 |
+
hidden_states=all_hidden_states,
|
684 |
+
attentions=all_self_attentions,
|
685 |
+
)
|
686 |
+
|
687 |
+
|
688 |
+
class RWForCausalLM(RWPreTrainedModel):
|
689 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
690 |
+
|
691 |
+
def __init__(self, config: RWConfig):
|
692 |
+
super().__init__(config)
|
693 |
+
self.transformer = RWModel(config)
|
694 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
695 |
+
|
696 |
+
# Initialize weights and apply final processing
|
697 |
+
self.post_init()
|
698 |
+
|
699 |
+
def get_output_embeddings(self):
|
700 |
+
return self.lm_head
|
701 |
+
|
702 |
+
def set_output_embeddings(self, new_embeddings: torch.Tensor):
|
703 |
+
self.lm_head = new_embeddings
|
704 |
+
|
705 |
+
def prepare_inputs_for_generation(
|
706 |
+
self,
|
707 |
+
input_ids: torch.LongTensor,
|
708 |
+
past: Optional[torch.Tensor] = None,
|
709 |
+
attention_mask: Optional[torch.Tensor] = None,
|
710 |
+
**kwargs,
|
711 |
+
) -> dict:
|
712 |
+
# only last token for input_ids if past is not None
|
713 |
+
if past:
|
714 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
715 |
+
|
716 |
+
# the cache may be in the stardard format (e.g. in contrastive search), convert to our's format if needed
|
717 |
+
if past[0][0].shape[0] == input_ids.shape[0]:
|
718 |
+
past = self._convert_to_rw_cache(past)
|
719 |
+
|
720 |
+
return {
|
721 |
+
"input_ids": input_ids,
|
722 |
+
"past_key_values": past,
|
723 |
+
"use_cache": kwargs.get("use_cache"),
|
724 |
+
"attention_mask": attention_mask,
|
725 |
+
}
|
726 |
+
|
727 |
+
def forward(
|
728 |
+
self,
|
729 |
+
input_ids: Optional[torch.LongTensor] = None,
|
730 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
731 |
+
attention_mask: Optional[torch.Tensor] = None,
|
732 |
+
head_mask: Optional[torch.Tensor] = None,
|
733 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
734 |
+
labels: Optional[torch.Tensor] = None,
|
735 |
+
use_cache: Optional[bool] = None,
|
736 |
+
output_attentions: Optional[bool] = None,
|
737 |
+
output_hidden_states: Optional[bool] = None,
|
738 |
+
return_dict: Optional[bool] = None,
|
739 |
+
**deprecated_arguments,
|
740 |
+
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
741 |
+
r"""
|
742 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
743 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
744 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
745 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
746 |
+
"""
|
747 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
748 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
749 |
+
warnings.warn(
|
750 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
751 |
+
" passing `position_ids`.",
|
752 |
+
FutureWarning,
|
753 |
+
)
|
754 |
+
if len(deprecated_arguments) > 0:
|
755 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
756 |
+
|
757 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
758 |
+
|
759 |
+
transformer_outputs = self.transformer(
|
760 |
+
input_ids,
|
761 |
+
past_key_values=past_key_values,
|
762 |
+
attention_mask=attention_mask,
|
763 |
+
head_mask=head_mask,
|
764 |
+
inputs_embeds=inputs_embeds,
|
765 |
+
use_cache=use_cache,
|
766 |
+
output_attentions=output_attentions,
|
767 |
+
output_hidden_states=output_hidden_states,
|
768 |
+
return_dict=return_dict,
|
769 |
+
)
|
770 |
+
hidden_states = transformer_outputs[0]
|
771 |
+
|
772 |
+
lm_logits = self.lm_head(hidden_states)
|
773 |
+
|
774 |
+
loss = None
|
775 |
+
if labels is not None:
|
776 |
+
# Shift so that tokens < n predict n
|
777 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
778 |
+
shift_labels = labels[..., 1:].contiguous()
|
779 |
+
batch_size, seq_length, vocab_size = shift_logits.shape
|
780 |
+
# Flatten the tokens
|
781 |
+
loss_fct = CrossEntropyLoss()
|
782 |
+
loss = loss_fct(
|
783 |
+
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
|
784 |
+
)
|
785 |
+
|
786 |
+
if not return_dict:
|
787 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
788 |
+
return ((loss,) + output) if loss is not None else output
|
789 |
+
|
790 |
+
return CausalLMOutputWithCrossAttentions(
|
791 |
+
loss=loss,
|
792 |
+
logits=lm_logits,
|
793 |
+
past_key_values=transformer_outputs.past_key_values,
|
794 |
+
hidden_states=transformer_outputs.hidden_states,
|
795 |
+
attentions=transformer_outputs.attentions,
|
796 |
+
)
|
797 |
+
|
798 |
+
def _reorder_cache(
|
799 |
+
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
800 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
801 |
+
"""
|
802 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
803 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
804 |
+
beam_idx at every generation step.
|
805 |
+
|
806 |
+
Output shares the same memory storage as `past`.
|
807 |
+
"""
|
808 |
+
standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx))
|
809 |
+
|
810 |
+
# Get a copy of `beam_idx` on all the devices where we need those indices.
|
811 |
+
device_to_beam_idx = {
|
812 |
+
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
|
813 |
+
}
|
814 |
+
reordered_past = tuple(
|
815 |
+
(
|
816 |
+
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
817 |
+
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
|
818 |
+
)
|
819 |
+
for layer_past in standardized_past
|
820 |
+
)
|
821 |
+
return self._convert_to_rw_cache(reordered_past)
|
822 |
+
|
823 |
+
|
824 |
+
class RWForSequenceClassification(RWPreTrainedModel):
|
825 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
826 |
+
|
827 |
+
def __init__(self, config: RWConfig):
|
828 |
+
super().__init__(config)
|
829 |
+
self.num_labels = config.num_labels
|
830 |
+
self.transformer = RWModel(config)
|
831 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
|
832 |
+
|
833 |
+
# Initialize weights and apply final processing
|
834 |
+
self.post_init()
|
835 |
+
|
836 |
+
def forward(
|
837 |
+
self,
|
838 |
+
input_ids: Optional[torch.LongTensor] = None,
|
839 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
840 |
+
attention_mask: Optional[torch.Tensor] = None,
|
841 |
+
head_mask: Optional[torch.Tensor] = None,
|
842 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
843 |
+
labels: Optional[torch.Tensor] = None,
|
844 |
+
use_cache: Optional[bool] = None,
|
845 |
+
output_attentions: Optional[bool] = None,
|
846 |
+
output_hidden_states: Optional[bool] = None,
|
847 |
+
return_dict: Optional[bool] = None,
|
848 |
+
**deprecated_arguments,
|
849 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
850 |
+
r"""
|
851 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
852 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
853 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
854 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
855 |
+
"""
|
856 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
857 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
858 |
+
warnings.warn(
|
859 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
860 |
+
" passing `position_ids`.",
|
861 |
+
FutureWarning,
|
862 |
+
)
|
863 |
+
if len(deprecated_arguments) > 0:
|
864 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
865 |
+
|
866 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
867 |
+
|
868 |
+
transformer_outputs = self.transformer(
|
869 |
+
input_ids,
|
870 |
+
past_key_values=past_key_values,
|
871 |
+
attention_mask=attention_mask,
|
872 |
+
head_mask=head_mask,
|
873 |
+
inputs_embeds=inputs_embeds,
|
874 |
+
use_cache=use_cache,
|
875 |
+
output_attentions=output_attentions,
|
876 |
+
output_hidden_states=output_hidden_states,
|
877 |
+
return_dict=return_dict,
|
878 |
+
)
|
879 |
+
|
880 |
+
hidden_states = transformer_outputs[0]
|
881 |
+
logits = self.score(hidden_states)
|
882 |
+
|
883 |
+
if input_ids is not None:
|
884 |
+
batch_size = input_ids.shape[0]
|
885 |
+
else:
|
886 |
+
batch_size = inputs_embeds.shape[0]
|
887 |
+
|
888 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
889 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
890 |
+
if self.config.pad_token_id is None:
|
891 |
+
sequence_lengths = -1
|
892 |
+
else:
|
893 |
+
if input_ids is not None:
|
894 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(dim=-1) - 1
|
895 |
+
else:
|
896 |
+
sequence_lengths = -1
|
897 |
+
logger.warning(
|
898 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
899 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
900 |
+
)
|
901 |
+
|
902 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
903 |
+
|
904 |
+
loss = None
|
905 |
+
if labels is not None:
|
906 |
+
if self.config.problem_type is None:
|
907 |
+
if self.num_labels == 1:
|
908 |
+
self.config.problem_type = "regression"
|
909 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
910 |
+
self.config.problem_type = "single_label_classification"
|
911 |
+
else:
|
912 |
+
self.config.problem_type = "multi_label_classification"
|
913 |
+
|
914 |
+
if self.config.problem_type == "regression":
|
915 |
+
loss_fct = MSELoss()
|
916 |
+
if self.num_labels == 1:
|
917 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
918 |
+
else:
|
919 |
+
loss = loss_fct(pooled_logits, labels)
|
920 |
+
elif self.config.problem_type == "single_label_classification":
|
921 |
+
loss_fct = CrossEntropyLoss()
|
922 |
+
loss = loss_fct(pooled_logits, labels)
|
923 |
+
elif self.config.problem_type == "multi_label_classification":
|
924 |
+
loss_fct = BCEWithLogitsLoss()
|
925 |
+
loss = loss_fct(pooled_logits, labels)
|
926 |
+
if not return_dict:
|
927 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
928 |
+
return ((loss,) + output) if loss is not None else output
|
929 |
+
|
930 |
+
return SequenceClassifierOutputWithPast(
|
931 |
+
loss=loss,
|
932 |
+
logits=pooled_logits,
|
933 |
+
past_key_values=transformer_outputs.past_key_values,
|
934 |
+
hidden_states=transformer_outputs.hidden_states,
|
935 |
+
attentions=transformer_outputs.attentions,
|
936 |
+
)
|
937 |
+
|
938 |
+
|
939 |
+
class RWForTokenClassification(RWPreTrainedModel):
|
940 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
941 |
+
|
942 |
+
def __init__(self, config: RWConfig):
|
943 |
+
super().__init__(config)
|
944 |
+
self.num_labels = config.num_labels
|
945 |
+
|
946 |
+
self.transformer = RWModel(config)
|
947 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
948 |
+
classifier_dropout = config.classifier_dropout
|
949 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
950 |
+
classifier_dropout = config.hidden_dropout
|
951 |
+
else:
|
952 |
+
classifier_dropout = 0.1
|
953 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
954 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
955 |
+
|
956 |
+
# Initialize weights and apply final processing
|
957 |
+
self.post_init()
|
958 |
+
|
959 |
+
def forward(
|
960 |
+
self,
|
961 |
+
input_ids: Optional[torch.LongTensor] = None,
|
962 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
963 |
+
attention_mask: Optional[torch.Tensor] = None,
|
964 |
+
head_mask: Optional[torch.Tensor] = None,
|
965 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
966 |
+
labels: Optional[torch.Tensor] = None,
|
967 |
+
use_cache: Optional[bool] = None,
|
968 |
+
output_attentions: Optional[bool] = None,
|
969 |
+
output_hidden_states: Optional[bool] = None,
|
970 |
+
return_dict: Optional[bool] = None,
|
971 |
+
**deprecated_arguments,
|
972 |
+
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
973 |
+
r"""
|
974 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
975 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
976 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
977 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
978 |
+
"""
|
979 |
+
if deprecated_arguments.pop("position_ids", False) is not False:
|
980 |
+
# `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None`
|
981 |
+
warnings.warn(
|
982 |
+
"`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore"
|
983 |
+
" passing `position_ids`.",
|
984 |
+
FutureWarning,
|
985 |
+
)
|
986 |
+
if len(deprecated_arguments) > 0:
|
987 |
+
raise ValueError(f"Got unexpected arguments: {deprecated_arguments}")
|
988 |
+
|
989 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
990 |
+
|
991 |
+
transformer_outputs = self.transformer(
|
992 |
+
input_ids,
|
993 |
+
past_key_values=past_key_values,
|
994 |
+
attention_mask=attention_mask,
|
995 |
+
head_mask=head_mask,
|
996 |
+
inputs_embeds=inputs_embeds,
|
997 |
+
use_cache=use_cache,
|
998 |
+
output_attentions=output_attentions,
|
999 |
+
output_hidden_states=output_hidden_states,
|
1000 |
+
return_dict=return_dict,
|
1001 |
+
)
|
1002 |
+
|
1003 |
+
hidden_states = transformer_outputs[0]
|
1004 |
+
hidden_states = self.dropout(hidden_states)
|
1005 |
+
logits = self.classifier(hidden_states)
|
1006 |
+
|
1007 |
+
loss = None
|
1008 |
+
if labels is not None:
|
1009 |
+
batch_size, seq_length = labels.shape
|
1010 |
+
loss_fct = CrossEntropyLoss()
|
1011 |
+
loss = loss_fct(logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length))
|
1012 |
+
|
1013 |
+
if not return_dict:
|
1014 |
+
output = (logits,) + transformer_outputs[2:]
|
1015 |
+
return ((loss,) + output) if loss is not None else output
|
1016 |
+
|
1017 |
+
return TokenClassifierOutput(
|
1018 |
+
loss=loss,
|
1019 |
+
logits=logits,
|
1020 |
+
hidden_states=transformer_outputs.hidden_states,
|
1021 |
+
attentions=transformer_outputs.attentions,
|
1022 |
+
)
|
1023 |
+
|
1024 |
+
|
1025 |
+
class RWForQuestionAnswering(RWPreTrainedModel):
|
1026 |
+
_keys_to_ignore_on_load_missing = [r"h.*.self_attention.scale_mask_softmax.causal_mask", r"lm_head.weight"]
|
1027 |
+
|
1028 |
+
def __init__(self, config):
|
1029 |
+
super().__init__(config)
|
1030 |
+
self.transformer = RWModel(config)
|
1031 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
1032 |
+
|
1033 |
+
# Initialize weights and apply final processing
|
1034 |
+
self.post_init()
|
1035 |
+
|
1036 |
+
def forward(
|
1037 |
+
self,
|
1038 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1039 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1040 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1041 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1042 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1043 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1044 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1045 |
+
output_attentions: Optional[bool] = None,
|
1046 |
+
output_hidden_states: Optional[bool] = None,
|
1047 |
+
return_dict: Optional[bool] = None,
|
1048 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1049 |
+
r"""
|
1050 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1051 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1052 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1053 |
+
are not taken into account for computing the loss.
|
1054 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1055 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1056 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1057 |
+
are not taken into account for computing the loss.
|
1058 |
+
"""
|
1059 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1060 |
+
|
1061 |
+
outputs = self.transformer(
|
1062 |
+
input_ids,
|
1063 |
+
attention_mask=attention_mask,
|
1064 |
+
position_ids=position_ids,
|
1065 |
+
head_mask=head_mask,
|
1066 |
+
inputs_embeds=inputs_embeds,
|
1067 |
+
output_attentions=output_attentions,
|
1068 |
+
output_hidden_states=output_hidden_states,
|
1069 |
+
return_dict=return_dict,
|
1070 |
+
)
|
1071 |
+
|
1072 |
+
sequence_output = outputs[0]
|
1073 |
+
|
1074 |
+
logits = self.qa_outputs(sequence_output)
|
1075 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1076 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1077 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1078 |
+
|
1079 |
+
total_loss = None
|
1080 |
+
if start_positions is not None and end_positions is not None:
|
1081 |
+
# If we are on multi-GPU, split add a dimension
|
1082 |
+
if len(start_positions.size()) > 1:
|
1083 |
+
start_positions = start_positions.squeeze(-1)
|
1084 |
+
if len(end_positions.size()) > 1:
|
1085 |
+
end_positions = end_positions.squeeze(-1)
|
1086 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1087 |
+
ignored_index = start_logits.size(1)
|
1088 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1089 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1090 |
+
|
1091 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1092 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1093 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1094 |
+
total_loss = (start_loss + end_loss) / 2
|
1095 |
+
|
1096 |
+
if not return_dict:
|
1097 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1098 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1099 |
+
|
1100 |
+
return QuestionAnsweringModelOutput(
|
1101 |
+
loss=total_loss,
|
1102 |
+
start_logits=start_logits,
|
1103 |
+
end_logits=end_logits,
|
1104 |
+
hidden_states=outputs.hidden_states,
|
1105 |
+
attentions=outputs.attentions,
|
1106 |
+
)
|
quantize_config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bits": 4,
|
3 |
+
"group_size": 128,
|
4 |
+
"damp_percent": 0.01,
|
5 |
+
"desc_act": true,
|
6 |
+
"sym": true,
|
7 |
+
"true_sequential": true,
|
8 |
+
"model_name_or_path": null,
|
9 |
+
"model_file_base_name": null
|
10 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
">>TITLE<<",
|
4 |
+
">>ABSTRACT<<",
|
5 |
+
">>INTRODUCTION<<",
|
6 |
+
">>SUMMARY<<",
|
7 |
+
">>COMMENT<<",
|
8 |
+
">>ANSWER<<",
|
9 |
+
">>QUESTION<<",
|
10 |
+
">>DOMAIN<<",
|
11 |
+
">>PREFIX<<",
|
12 |
+
">>SUFFIX<<",
|
13 |
+
">>MIDDLE<<"
|
14 |
+
],
|
15 |
+
"eos_token": "<|endoftext|>"
|
16 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"eos_token": "<|endoftext|>",
|
5 |
+
"model_max_length": 2048,
|
6 |
+
"tokenizer_class": "PreTrainedTokenizerFast"
|
7 |
+
}
|