Upload model trained with the spacy library to recognize addresses; base model is bert based, language GER
ca2a4dd
[paths] | |
train = "./spacy_address_model/corpus/spacy-docbins/address_de_train.spacy" | |
dev = "./spacy_address_model/corpus/spacy-docbins/address_de_test.spacy" | |
vectors = null | |
init_tok2vec = null | |
[system] | |
gpu_allocator = "pytorch" | |
seed = 0 | |
[nlp] | |
lang = "de" | |
pipeline = ["transformer","tagger","parser","ner"] | |
batch_size = 128 | |
disabled = [] | |
before_creation = null | |
after_creation = null | |
after_pipeline_creation = null | |
tokenizer = {"@tokenizers":"spacy.Tokenizer.v1"} | |
[components] | |
[components.ner] | |
factory = "ner" | |
incorrect_spans_key = null | |
moves = null | |
scorer = {"@scorers":"spacy.ner_scorer.v1"} | |
update_with_oracle_cut_size = 100 | |
[components.ner.model] | |
@architectures = "spacy.TransitionBasedParser.v2" | |
state_type = "ner" | |
extra_state_tokens = false | |
hidden_width = 64 | |
maxout_pieces = 2 | |
use_upper = false | |
nO = null | |
[components.ner.model.tok2vec] | |
@architectures = "spacy-transformers.TransformerListener.v1" | |
grad_factor = 1.0 | |
pooling = {"@layers":"reduce_mean.v1"} | |
upstream = "*" | |
[components.parser] | |
factory = "parser" | |
learn_tokens = false | |
min_action_freq = 30 | |
moves = null | |
scorer = {"@scorers":"spacy.parser_scorer.v1"} | |
update_with_oracle_cut_size = 100 | |
[components.parser.model] | |
@architectures = "spacy.TransitionBasedParser.v2" | |
state_type = "parser" | |
extra_state_tokens = false | |
hidden_width = 64 | |
maxout_pieces = 2 | |
use_upper = false | |
nO = null | |
[components.parser.model.tok2vec] | |
@architectures = "spacy-transformers.TransformerListener.v1" | |
grad_factor = 1.0 | |
upstream = "transformer" | |
pooling = {"@layers":"reduce_mean.v1"} | |
[components.tagger] | |
factory = "tagger" | |
neg_prefix = "!" | |
overwrite = false | |
scorer = {"@scorers":"spacy.tagger_scorer.v1"} | |
[components.tagger.model] | |
@architectures = "spacy.Tagger.v2" | |
nO = null | |
normalize = false | |
[components.tagger.model.tok2vec] | |
@architectures = "spacy-transformers.TransformerListener.v1" | |
grad_factor = 1.0 | |
upstream = "transformer" | |
pooling = {"@layers":"reduce_mean.v1"} | |
[components.transformer] | |
factory = "transformer" | |
max_batch_items = 4096 | |
set_extra_annotations = {"@annotation_setters":"spacy-transformers.null_annotation_setter.v1"} | |
[components.transformer.model] | |
@architectures = "spacy-transformers.TransformerModel.v3" | |
name = "bert-base-german-cased" | |
mixed_precision = false | |
[components.transformer.model.get_spans] | |
@span_getters = "spacy-transformers.strided_spans.v1" | |
window = 128 | |
stride = 96 | |
[components.transformer.model.grad_scaler_config] | |
[components.transformer.model.tokenizer_config] | |
use_fast = true | |
[components.transformer.model.transformer_config] | |
[corpora] | |
[corpora.dev] | |
@readers = "spacy.Corpus.v1" | |
path = ${paths.dev} | |
max_length = 0 | |
gold_preproc = false | |
limit = 0 | |
augmenter = null | |
[corpora.train] | |
@readers = "spacy.Corpus.v1" | |
path = ${paths.train} | |
max_length = 0 | |
gold_preproc = false | |
limit = 0 | |
augmenter = null | |
[training] | |
accumulate_gradient = 3 | |
dev_corpus = "corpora.dev" | |
train_corpus = "corpora.train" | |
seed = ${system.seed} | |
gpu_allocator = ${system.gpu_allocator} | |
dropout = 0.1 | |
patience = 1600 | |
max_epochs = 0 | |
max_steps = 2000 | |
eval_frequency = 200 | |
frozen_components = [] | |
annotating_components = [] | |
before_to_disk = null | |
[training.batcher] | |
@batchers = "spacy.batch_by_padded.v1" | |
discard_oversize = true | |
size = 2000 | |
buffer = 256 | |
get_length = null | |
[training.logger] | |
@loggers = "spacy.ConsoleLogger.v1" | |
progress_bar = false | |
[training.optimizer] | |
@optimizers = "Adam.v1" | |
beta1 = 0.9 | |
beta2 = 0.999 | |
L2_is_weight_decay = true | |
L2 = 0.01 | |
grad_clip = 1.0 | |
use_averages = false | |
eps = 0.00000001 | |
[training.optimizer.learn_rate] | |
@schedules = "warmup_linear.v1" | |
warmup_steps = 250 | |
total_steps = 20000 | |
initial_rate = 0.00005 | |
[training.score_weights] | |
tag_acc = 0.33 | |
dep_uas = 0.17 | |
dep_las = 0.17 | |
dep_las_per_type = null | |
sents_p = null | |
sents_r = null | |
sents_f = 0.0 | |
ents_f = 0.33 | |
ents_p = 0.0 | |
ents_r = 0.0 | |
ents_per_type = null | |
[pretraining] | |
[initialize] | |
vectors = ${paths.vectors} | |
init_tok2vec = ${paths.init_tok2vec} | |
vocab_data = null | |
lookups = null | |
before_init = null | |
after_init = null | |
[initialize.components] | |
[initialize.tokenizer] |