File size: 14,541 Bytes
803ef9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import argparse
import os
import pandas as pd
import torch
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
from thop import profile, clever_format
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import MultiStepLR, CosineAnnealingWarmRestarts
from tqdm import tqdm
import utils
from model import Model
import math
import torchvision
import wandb
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = True
def off_diagonal(x):
n, m = x.shape
assert n == m
return x.flatten()[:-1].view(n - 1, n + 1)[:, 1:].flatten()
def adjust_learning_rate(args, optimizer, loader, step):
max_steps = args.epochs * len(loader)
warmup_steps = 10 * len(loader)
base_lr = args.batch_size / 256
if step < warmup_steps:
lr = base_lr * step / warmup_steps
else:
step -= warmup_steps
max_steps -= warmup_steps
q = 0.5 * (1 + math.cos(math.pi * step / max_steps))
end_lr = base_lr * 0.001
lr = base_lr * q + end_lr * (1 - q)
optimizer.param_groups[0]['lr'] = lr * args.lr
def train(args, epoch, net, data_loader, train_optimizer):
net.train()
total_loss, total_loss_bt, total_loss_mix, total_num, train_bar = 0.0, 0.0, 0.0, 0, tqdm(data_loader)
for step, data_tuple in enumerate(train_bar, start=epoch * len(train_bar)):
if args.lr_shed == "cosine":
adjust_learning_rate(args, train_optimizer, data_loader, step)
(pos_1, pos_2), _ = data_tuple
pos_1, pos_2 = pos_1.cuda(non_blocking=True), pos_2.cuda(non_blocking=True)
_, out_1 = net(pos_1)
_, out_2 = net(pos_2)
out_1_norm = (out_1 - out_1.mean(dim=0)) / out_1.std(dim=0)
out_2_norm = (out_2 - out_2.mean(dim=0)) / out_2.std(dim=0)
c = torch.matmul(out_1_norm.T, out_2_norm) / batch_size
on_diag = torch.diagonal(c).add_(-1).pow_(2).sum()
off_diag = off_diagonal(c).pow_(2).sum()
loss_bt = on_diag + lmbda * off_diag
## MixUp (Our Contribution) ##
if args.is_mixup.lower() == 'true':
index = torch.randperm(batch_size).cuda(non_blocking=True)
alpha = np.random.beta(1.0, 1.0)
pos_m = alpha * pos_1 + (1 - alpha) * pos_2[index, :]
_, out_m = net(pos_m)
out_m_norm = (out_m - out_m.mean(dim=0)) / out_m.std(dim=0)
cc_m_1 = torch.matmul(out_m_norm.T, out_1_norm) / batch_size
cc_m_1_gt = alpha*torch.matmul(out_1_norm.T, out_1_norm) / batch_size + \
(1-alpha)*torch.matmul(out_2_norm[index,:].T, out_1_norm) / batch_size
cc_m_2 = torch.matmul(out_m_norm.T, out_2_norm) / batch_size
cc_m_2_gt = alpha*torch.matmul(out_1_norm.T, out_2_norm) / batch_size + \
(1-alpha)*torch.matmul(out_2_norm[index,:].T, out_2_norm) / batch_size
loss_mix = args.mixup_loss_scale*lmbda*((cc_m_1-cc_m_1_gt).pow_(2).sum() + (cc_m_2-cc_m_2_gt).pow_(2).sum())
else:
loss_mix = torch.zeros(1).cuda()
## MixUp (Our Contribution) ##
loss = loss_bt + loss_mix
train_optimizer.zero_grad()
loss.backward()
train_optimizer.step()
total_num += batch_size
total_loss += loss.item() * batch_size
total_loss_bt += loss_bt.item() * batch_size
total_loss_mix += loss_mix.item() * batch_size
train_bar.set_description('Train Epoch: [{}/{}] lr: {:.3f}x10-3 Loss: {:.4f} lmbda:{:.4f} bsz:{} f_dim:{} dataset: {}'.format(\
epoch, epochs, train_optimizer.param_groups[0]['lr'] * 1000, total_loss / total_num, lmbda, batch_size, feature_dim, dataset))
return total_loss_bt / total_num, total_loss_mix / total_num, total_loss / total_num
def test(net, memory_data_loader, test_data_loader):
net.eval()
total_top1, total_top5, total_num, feature_bank, target_bank = 0.0, 0.0, 0, [], []
with torch.no_grad():
# generate feature bank and target bank
for data_tuple in tqdm(memory_data_loader, desc='Feature extracting'):
(data, _), target = data_tuple
target_bank.append(target)
feature, out = net(data.cuda(non_blocking=True))
feature_bank.append(feature)
# [D, N]
feature_bank = torch.cat(feature_bank, dim=0).t().contiguous()
# [N]
feature_labels = torch.cat(target_bank, dim=0).contiguous().to(feature_bank.device)
# loop test data to predict the label by weighted knn search
test_bar = tqdm(test_data_loader)
for data_tuple in test_bar:
(data, _), target = data_tuple
data, target = data.cuda(non_blocking=True), target.cuda(non_blocking=True)
feature, out = net(data)
total_num += data.size(0)
# compute cos similarity between each feature vector and feature bank ---> [B, N]
sim_matrix = torch.mm(feature, feature_bank)
# [B, K]
sim_weight, sim_indices = sim_matrix.topk(k=k, dim=-1)
# [B, K]
sim_labels = torch.gather(feature_labels.expand(data.size(0), -1), dim=-1, index=sim_indices)
sim_weight = (sim_weight / temperature).exp()
# counts for each class
one_hot_label = torch.zeros(data.size(0) * k, c, device=sim_labels.device)
# [B*K, C]
one_hot_label = one_hot_label.scatter(dim=-1, index=sim_labels.view(-1, 1), value=1.0)
# weighted score ---> [B, C]
pred_scores = torch.sum(one_hot_label.view(data.size(0), -1, c) * sim_weight.unsqueeze(dim=-1), dim=1)
pred_labels = pred_scores.argsort(dim=-1, descending=True)
total_top1 += torch.sum((pred_labels[:, :1] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
total_top5 += torch.sum((pred_labels[:, :5] == target.unsqueeze(dim=-1)).any(dim=-1).float()).item()
test_bar.set_description('Test Epoch: [{}/{}] Acc@1:{:.2f}% Acc@5:{:.2f}%'
.format(epoch, epochs, total_top1 / total_num * 100, total_top5 / total_num * 100))
return total_top1 / total_num * 100, total_top5 / total_num * 100
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Training Barlow Twins')
parser.add_argument('--dataset', default='cifar10', type=str, help='Dataset: cifar10, cifar100, tiny_imagenet, stl10', choices=['cifar10', 'cifar100', 'tiny_imagenet', 'stl10'])
parser.add_argument('--arch', default='resnet50', type=str, help='Backbone architecture', choices=['resnet50', 'resnet18'])
parser.add_argument('--feature_dim', default=128, type=int, help='Feature dim for embedding vector')
parser.add_argument('--temperature', default=0.5, type=float, help='Temperature used in softmax (kNN evaluation)')
parser.add_argument('--k', default=200, type=int, help='Top k most similar images used to predict the label')
parser.add_argument('--batch_size', default=512, type=int, help='Number of images in each mini-batch')
parser.add_argument('--epochs', default=1000, type=int, help='Number of sweeps over the dataset to train')
parser.add_argument('--lr', default=1e-3, type=float, help='Base learning rate')
parser.add_argument('--lr_shed', default="step", choices=["step", "cosine"], type=str, help='Learning rate scheduler: step / cosine')
# for barlow twins
parser.add_argument('--lmbda', default=0.005, type=float, help='Lambda that controls the on- and off-diagonal terms')
parser.add_argument('--corr_neg_one', dest='corr_neg_one', action='store_true')
parser.add_argument('--corr_zero', dest='corr_neg_one', action='store_false')
parser.set_defaults(corr_neg_one=False)
# for mixup
parser.add_argument('--is_mixup', dest='is_mixup', type=str, default='false', choices=['true', 'false'])
parser.add_argument('--mixup_loss_scale', dest='mixup_loss_scale', type=float, default=5.0)
# GPU id (just for record)
parser.add_argument('--gpu', dest='gpu', type=int, default=0)
args = parser.parse_args()
is_mixup = args.is_mixup.lower() == 'true'
wandb.init(project=f"Barlow-Twins-MixUp-{args.dataset}-{args.arch}", config=args, dir='results/wandb_logs/')
run_id = wandb.run.id
dataset = args.dataset
feature_dim, temperature, k = args.feature_dim, args.temperature, args.k
batch_size, epochs = args.batch_size, args.epochs
lmbda = args.lmbda
corr_neg_one = args.corr_neg_one
if dataset == 'cifar10':
train_data = torchvision.datasets.CIFAR10(root='/data/wbandar1/datasets', train=True, \
transform=utils.CifarPairTransform(train_transform = True), download=True)
memory_data = torchvision.datasets.CIFAR10(root='/data/wbandar1/datasets', train=True, \
transform=utils.CifarPairTransform(train_transform = False), download=True)
test_data = torchvision.datasets.CIFAR10(root='/data/wbandar1/datasets', train=False, \
transform=utils.CifarPairTransform(train_transform = False), download=True)
elif dataset == 'cifar100':
train_data = torchvision.datasets.CIFAR100(root='/data/wbandar1/datasets', train=True, \
transform=utils.CifarPairTransform(train_transform = True), download=True)
memory_data = torchvision.datasets.CIFAR100(root='/data/wbandar1/datasets', train=True, \
transform=utils.CifarPairTransform(train_transform = False), download=True)
test_data = torchvision.datasets.CIFAR100(root='/data/wbandar1/datasets', train=False, \
transform=utils.CifarPairTransform(train_transform = False), download=True)
elif dataset == 'stl10':
train_data = torchvision.datasets.STL10(root='/data/wbandar1/datasets', split="train+unlabeled", \
transform=utils.StlPairTransform(train_transform = True), download=True)
memory_data = torchvision.datasets.STL10(root='/data/wbandar1/datasets', split="train", \
transform=utils.StlPairTransform(train_transform = False), download=True)
test_data = torchvision.datasets.STL10(root='/data/wbandar1/datasets', split="test", \
transform=utils.StlPairTransform(train_transform = False), download=True)
elif dataset == 'tiny_imagenet':
# download if not exits
if not os.path.isdir('/data/wbandar1/datasets/tiny-imagenet-200'):
raise ValueError("First preprocess the tinyimagenet dataset...")
train_data = torchvision.datasets.ImageFolder('/data/wbandar1/datasets/tiny-imagenet-200/train', \
utils.TinyImageNetPairTransform(train_transform = True))
memory_data = torchvision.datasets.ImageFolder('/data/wbandar1/datasets/tiny-imagenet-200/train', \
utils.TinyImageNetPairTransform(train_transform = False))
test_data = torchvision.datasets.ImageFolder('/data/wbandar1/datasets/tiny-imagenet-200/val', \
utils.TinyImageNetPairTransform(train_transform = False))
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=16, pin_memory=True,
drop_last=True)
memory_loader = DataLoader(memory_data, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False, num_workers=16, pin_memory=True)
# model setup and optimizer config
model = Model(feature_dim, dataset, args.arch).cuda()
if dataset == 'cifar10' or dataset == 'cifar100':
flops, params = profile(model, inputs=(torch.randn(1, 3, 32, 32).cuda(),))
elif dataset == 'tiny_imagenet' or dataset == 'stl10':
flops, params = profile(model, inputs=(torch.randn(1, 3, 64, 64).cuda(),))
flops, params = clever_format([flops, params])
print('# Model Params: {} FLOPs: {}'.format(params, flops))
optimizer = optim.Adam(model.parameters(), lr=1e-3, weight_decay=1e-6)
if args.lr_shed == "step":
m = [args.epochs - a for a in [50, 25]]
scheduler = MultiStepLR(optimizer, milestones=m, gamma=0.2)
c = len(memory_data.classes)
results = {'train_loss': [], 'test_acc@1': [], 'test_acc@5': []}
save_name_pre = '{}_{}_{}_{}_{}'.format(run_id, lmbda, feature_dim, batch_size, dataset)
run_id_dir = os.path.join('results/', run_id)
if not os.path.exists(run_id_dir):
print('Creating directory {}'.format(run_id_dir))
os.mkdir(run_id_dir)
best_acc = 0.0
for epoch in range(1, epochs + 1):
loss_bt, loss_mix, train_loss = train(args, epoch, model, train_loader, optimizer)
if args.lr_shed == "step":
scheduler.step()
wandb.log(
{
"epoch": epoch,
"lr": optimizer.param_groups[0]['lr'],
"loss_bt": loss_bt,
"loss_mix": loss_mix,
"train_loss": train_loss}
)
if epoch % 5 == 0:
test_acc_1, test_acc_5 = test(model, memory_loader, test_loader)
results['train_loss'].append(train_loss)
results['test_acc@1'].append(test_acc_1)
results['test_acc@5'].append(test_acc_5)
data_frame = pd.DataFrame(data=results, index=range(5, epoch + 1, 5))
data_frame.to_csv('results/{}_statistics.csv'.format(save_name_pre), index_label='epoch')
wandb.log(
{
"test_acc@1": test_acc_1,
"test_acc@5": test_acc_5
}
)
if test_acc_1 > best_acc:
best_acc = test_acc_1
torch.save(model.state_dict(), 'results/{}/{}_model.pth'.format(run_id, save_name_pre))
if epoch % 50 == 0:
torch.save(model.state_dict(), 'results/{}/{}_model_{}.pth'.format(run_id, save_name_pre, epoch))
wandb.finish()
|