Update README.md
Browse files
README.md
CHANGED
@@ -1,80 +1,13 @@
|
|
1 |
---
|
2 |
license: gemma
|
3 |
-
|
|
|
4 |
pipeline_tag: text-generation
|
5 |
-
base_model: google/gemma-2-27b-it
|
6 |
tags:
|
7 |
- alignment-handbook
|
8 |
- generated_from_trainer
|
9 |
---
|
10 |
|
11 |
-
|
12 |
|
13 |
-
|
14 |
-
We first followed the [SimPO](https://github.com/princeton-nlp/SimPO) framework to apply [On-Policy Preference Data Generation](https://github.com/princeton-nlp/SimPO/tree/main/on_policy_data_gen) on the [HuggingFaceH4/ultrafeedback_binarized](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized) dataset using the [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it) model. We then selected prompts where the chosen reward was at least 0.01 higher than the rejected reward, resulting in 37,040 training data points.
|
15 |
-
|
16 |
-
Model training was conducted using 8x80G A800 GPUs, leveraging the [alignment-handbook](https://github.com/huggingface/alignment-handbook) library. We used `deepspeed_zero_stage3` with optimizer offloading to the CPU. The `SimPOTrainer` arguments were as follows:
|
17 |
-
|
18 |
-
```bash
|
19 |
-
# SimPOTrainer arguments
|
20 |
-
bf16: true
|
21 |
-
beta: 10
|
22 |
-
gamma_beta_ratio: 0.5
|
23 |
-
gradient_accumulation_steps: 8
|
24 |
-
gradient_checkpointing: true
|
25 |
-
gradient_checkpointing_kwargs:
|
26 |
-
use_reentrant: true
|
27 |
-
hub_model_id: simpo-exps
|
28 |
-
learning_rate: 8.0e-7
|
29 |
-
log_level: info
|
30 |
-
logging_steps: 1
|
31 |
-
lr_scheduler_type: cosine
|
32 |
-
max_length: 2048
|
33 |
-
max_prompt_length: 1800
|
34 |
-
num_train_epochs: 1
|
35 |
-
optim: adamw_torch
|
36 |
-
output_dir: outputs/gemma-2-27b-it-SimPO
|
37 |
-
run_name: gemma-2-27b-it-SimPO
|
38 |
-
per_device_train_batch_size: 2
|
39 |
-
push_to_hub: false
|
40 |
-
save_strategy: "steps"
|
41 |
-
save_steps: 100
|
42 |
-
save_total_limit: 20
|
43 |
-
seed: 42
|
44 |
-
warmup_ratio: 0.1
|
45 |
-
save_only_model: true
|
46 |
-
```
|
47 |
-
|
48 |
-
## Citation
|
49 |
-
|
50 |
-
gemma model:
|
51 |
-
```
|
52 |
-
@article{gemma_2024,
|
53 |
-
title={Gemma},
|
54 |
-
url={https://www.kaggle.com/m/3301},
|
55 |
-
DOI={10.34740/KAGGLE/M/3301},
|
56 |
-
publisher={Kaggle},
|
57 |
-
author={Gemma Team},
|
58 |
-
year={2024}
|
59 |
-
}
|
60 |
-
```
|
61 |
-
|
62 |
-
SimPO paper:
|
63 |
-
```
|
64 |
-
@article{meng2024simpo,
|
65 |
-
title={{SimPO}: Simple preference optimization with a reference-free reward},
|
66 |
-
author={Meng, Yu and Xia, Mengzhou and Chen, Danqi},
|
67 |
-
journal={arXiv preprint arXiv:2405.14734},
|
68 |
-
year={2024}
|
69 |
-
}
|
70 |
-
```
|
71 |
-
|
72 |
-
UltraFeedback paper:
|
73 |
-
```
|
74 |
-
@article{cui2023ultrafeedback,
|
75 |
-
title={{UltraFeedback}: Boosting language models with high-quality feedback},
|
76 |
-
author={Cui, Ganqu and Yuan, Lifan and Ding, Ning and Yao, Guanming and Zhu, Wei and Ni, Yuan and Xie, Guotong and Liu, Zhiyuan and Sun, Maosong},
|
77 |
-
journal={arXiv preprint arXiv:2310.01377},
|
78 |
-
year={2023}
|
79 |
-
}
|
80 |
-
```
|
|
|
1 |
---
|
2 |
license: gemma
|
3 |
+
base_model: AALF/gemma-2-27b-it-SimPO-37K
|
4 |
+
base_model_relation: quantized
|
5 |
pipeline_tag: text-generation
|
|
|
6 |
tags:
|
7 |
- alignment-handbook
|
8 |
- generated_from_trainer
|
9 |
---
|
10 |
|
11 |
+
fits into 24gb with 24576 ctx (q4)
|
12 |
|
13 |
+
set rope_alpha to 3.75
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|