--- language: ko license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - kresnik/zeroth_korean base_model: Wav2Vec2-XLS-R-300M model-index: - name: Wav2Vec2 XLS-R 300M Korean results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Zeroth Korean type: kresnik/zeroth_korean args: clean metrics: - type: wer value: 29.54 name: Test WER - type: cer value: 9.53 name: Test CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: ko metrics: - type: wer value: 76.26 name: Test WER - type: cer value: 38.67 name: Test CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: ko metrics: - type: wer value: 73.18 name: Test WER --- # Wav2Vec2 XLS-R 300M Korean Wav2Vec2 XLS-R 300M Korean is an automatic speech recognition model based on the [XLS-R](https://arxiv.org/abs/2111.09296) architecture. This model is a fine-tuned version of [Wav2Vec2-XLS-R-300M](https://huggingface.co./facebook/wav2vec2-xls-r-300m) on the [Zeroth Korean](https://huggingface.co./datasets/kresnik/zeroth_korean) dataset. This model was trained using HuggingFace's PyTorch framework and is part of the [Robust Speech Challenge Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614) organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH. All necessary scripts used for training could be found in the [Files and versions](https://huggingface.co./w11wo/wav2vec2-xls-r-300m-korean/tree/main) tab, as well as the [Training metrics](https://huggingface.co./w11wo/wav2vec2-xls-r-300m-korean/tensorboard) logged via Tensorboard. ## Model | Model | #params | Arch. | Training/Validation data (text) | | ---------------------------- | ------- | ----- | ------------------------------- | | `wav2vec2-xls-r-300m-korean` | 300M | XLS-R | `Zeroth Korean` Dataset | ## Evaluation Results The model achieves the following results on evaluation: | Dataset | Loss | WER | CER | | -------------------------------- | ------ | ------ | ------ | | `Zeroth Korean` | 0.2089 | 29.54% | 9.53% | | `Robust Speech Event - Dev Data` | N/A | 76.26% | 38.67% | ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - `learning_rate`: 7.5e-05 - `train_batch_size`: 8 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 4 - `total_train_batch_size`: 32 - `optimizer`: Adam with `betas=(0.9, 0.999)` and `epsilon=1e-08` - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 2000 - `num_epochs`: 50.0 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | | :-----------: | :---: | :---: | :-------------: | :----: | :----: | | 19.7138 | 0.72 | 500 | 19.6427 | 1.0 | 1.0 | | 4.8039 | 1.44 | 1000 | 4.7842 | 1.0 | 1.0 | | 4.5619 | 2.16 | 1500 | 4.5608 | 0.9992 | 0.9598 | | 4.254 | 2.88 | 2000 | 4.2729 | 0.9955 | 0.9063 | | 4.1905 | 3.6 | 2500 | 4.2257 | 0.9903 | 0.8758 | | 4.0683 | 4.32 | 3000 | 3.9294 | 0.9937 | 0.7911 | | 3.486 | 5.04 | 3500 | 2.7045 | 1.0012 | 0.5934 | | 2.946 | 5.75 | 4000 | 1.9691 | 0.9425 | 0.4634 | | 2.634 | 6.47 | 4500 | 1.5212 | 0.8807 | 0.3850 | | 2.4066 | 7.19 | 5000 | 1.2551 | 0.8177 | 0.3601 | | 2.2651 | 7.91 | 5500 | 1.0423 | 0.7650 | 0.3039 | | 2.1828 | 8.63 | 6000 | 0.9599 | 0.7273 | 0.3106 | | 2.1023 | 9.35 | 6500 | 0.9482 | 0.7161 | 0.3063 | | 2.0536 | 10.07 | 7000 | 0.8242 | 0.6767 | 0.2860 | | 1.9803 | 10.79 | 7500 | 0.7643 | 0.6563 | 0.2637 | | 1.9468 | 11.51 | 8000 | 0.7319 | 0.6441 | 0.2505 | | 1.9178 | 12.23 | 8500 | 0.6937 | 0.6320 | 0.2489 | | 1.8515 | 12.95 | 9000 | 0.6443 | 0.6053 | 0.2196 | | 1.8083 | 13.67 | 9500 | 0.6286 | 0.6122 | 0.2148 | | 1.819 | 14.39 | 10000 | 0.6015 | 0.5986 | 0.2074 | | 1.7684 | 15.11 | 10500 | 0.5682 | 0.5741 | 0.1982 | | 1.7195 | 15.83 | 11000 | 0.5385 | 0.5592 | 0.2007 | | 1.7044 | 16.55 | 11500 | 0.5362 | 0.5524 | 0.2097 | | 1.6879 | 17.27 | 12000 | 0.5119 | 0.5489 | 0.2083 | | 1.656 | 17.98 | 12500 | 0.4990 | 0.5362 | 0.1968 | | 1.6122 | 18.7 | 13000 | 0.4561 | 0.5092 | 0.1900 | | 1.5919 | 19.42 | 13500 | 0.4778 | 0.5225 | 0.1975 | | 1.5896 | 20.14 | 14000 | 0.4563 | 0.5098 | 0.1859 | | 1.5589 | 20.86 | 14500 | 0.4362 | 0.4940 | 0.1725 | | 1.5353 | 21.58 | 15000 | 0.4140 | 0.4826 | 0.1580 | | 1.5441 | 22.3 | 15500 | 0.4031 | 0.4742 | 0.1550 | | 1.5116 | 23.02 | 16000 | 0.3916 | 0.4748 | 0.1545 | | 1.4731 | 23.74 | 16500 | 0.3841 | 0.4810 | 0.1542 | | 1.4647 | 24.46 | 17000 | 0.3752 | 0.4524 | 0.1475 | | 1.4328 | 25.18 | 17500 | 0.3587 | 0.4476 | 0.1461 | | 1.4129 | 25.9 | 18000 | 0.3429 | 0.4242 | 0.1366 | | 1.4062 | 26.62 | 18500 | 0.3450 | 0.4251 | 0.1355 | | 1.3928 | 27.34 | 19000 | 0.3297 | 0.4145 | 0.1322 | | 1.3906 | 28.06 | 19500 | 0.3210 | 0.4185 | 0.1336 | | 1.358 | 28.78 | 20000 | 0.3131 | 0.3970 | 0.1275 | | 1.3445 | 29.5 | 20500 | 0.3069 | 0.3920 | 0.1276 | | 1.3159 | 30.22 | 21000 | 0.3035 | 0.3961 | 0.1255 | | 1.3044 | 30.93 | 21500 | 0.2952 | 0.3854 | 0.1242 | | 1.3034 | 31.65 | 22000 | 0.2966 | 0.3772 | 0.1227 | | 1.2963 | 32.37 | 22500 | 0.2844 | 0.3706 | 0.1208 | | 1.2765 | 33.09 | 23000 | 0.2841 | 0.3567 | 0.1173 | | 1.2438 | 33.81 | 23500 | 0.2734 | 0.3552 | 0.1137 | | 1.2487 | 34.53 | 24000 | 0.2703 | 0.3502 | 0.1118 | | 1.2249 | 35.25 | 24500 | 0.2650 | 0.3484 | 0.1142 | | 1.2229 | 35.97 | 25000 | 0.2584 | 0.3374 | 0.1097 | | 1.2374 | 36.69 | 25500 | 0.2568 | 0.3337 | 0.1095 | | 1.2153 | 37.41 | 26000 | 0.2494 | 0.3327 | 0.1071 | | 1.1925 | 38.13 | 26500 | 0.2518 | 0.3366 | 0.1077 | | 1.1908 | 38.85 | 27000 | 0.2437 | 0.3272 | 0.1057 | | 1.1858 | 39.57 | 27500 | 0.2396 | 0.3265 | 0.1044 | | 1.1808 | 40.29 | 28000 | 0.2373 | 0.3156 | 0.1028 | | 1.1842 | 41.01 | 28500 | 0.2356 | 0.3152 | 0.1026 | | 1.1668 | 41.73 | 29000 | 0.2319 | 0.3188 | 0.1025 | | 1.1448 | 42.45 | 29500 | 0.2293 | 0.3099 | 0.0995 | | 1.1327 | 43.17 | 30000 | 0.2265 | 0.3047 | 0.0979 | | 1.1307 | 43.88 | 30500 | 0.2222 | 0.3078 | 0.0989 | | 1.1419 | 44.6 | 31000 | 0.2215 | 0.3038 | 0.0981 | | 1.1231 | 45.32 | 31500 | 0.2193 | 0.3013 | 0.0972 | | 1.139 | 46.04 | 32000 | 0.2162 | 0.3007 | 0.0968 | | 1.1114 | 46.76 | 32500 | 0.2122 | 0.2982 | 0.0960 | | 1.111 | 47.48 | 33000 | 0.2125 | 0.2946 | 0.0948 | | 1.0982 | 48.2 | 33500 | 0.2099 | 0.2957 | 0.0953 | | 1.109 | 48.92 | 34000 | 0.2092 | 0.2955 | 0.0955 | | 1.0905 | 49.64 | 34500 | 0.2088 | 0.2954 | 0.0953 | ## Disclaimer Do consider the biases which came from pre-training datasets that may be carried over into the results of this model. ## Authors Wav2Vec2 XLS-R 300M Korean was trained and evaluated by [Wilson Wongso](https://w11wo.github.io/). All computation and development are done on OVH Cloud. ## Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.10.3