Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- ar
|
5 |
+
- kn
|
6 |
+
- ar
|
7 |
+
- ka
|
8 |
+
- af
|
9 |
+
- kk
|
10 |
+
- am
|
11 |
+
- km
|
12 |
+
- ar
|
13 |
+
- ky
|
14 |
+
- ar
|
15 |
+
- ko
|
16 |
+
- as
|
17 |
+
- lo
|
18 |
+
- az
|
19 |
+
- ml
|
20 |
+
- az
|
21 |
+
- mr
|
22 |
+
- be
|
23 |
+
- mk
|
24 |
+
- bn
|
25 |
+
- my
|
26 |
+
- bs
|
27 |
+
- nl
|
28 |
+
- bg
|
29 |
+
- ca
|
30 |
+
- 'no'
|
31 |
+
- cs
|
32 |
+
- ne
|
33 |
+
- ku
|
34 |
+
- pl
|
35 |
+
- cy
|
36 |
+
- pt
|
37 |
+
- da
|
38 |
+
- ro
|
39 |
+
- de
|
40 |
+
- ru
|
41 |
+
- el
|
42 |
+
- sa
|
43 |
+
- en
|
44 |
+
- si
|
45 |
+
- eo
|
46 |
+
- sk
|
47 |
+
- et
|
48 |
+
- sl
|
49 |
+
- eu
|
50 |
+
- sd
|
51 |
+
- fi
|
52 |
+
- so
|
53 |
+
- fr
|
54 |
+
- es
|
55 |
+
- gd
|
56 |
+
- sr
|
57 |
+
- ga
|
58 |
+
- su
|
59 |
+
- gl
|
60 |
+
- sv
|
61 |
+
- gu
|
62 |
+
- sw
|
63 |
+
- ha
|
64 |
+
- ta
|
65 |
+
- he
|
66 |
+
- te
|
67 |
+
- hi
|
68 |
+
- th
|
69 |
+
- hr
|
70 |
+
- tr
|
71 |
+
- hu
|
72 |
+
- ug
|
73 |
+
- hy
|
74 |
+
- uk
|
75 |
+
- id
|
76 |
+
- ur
|
77 |
+
- is
|
78 |
+
- vi
|
79 |
+
- it
|
80 |
+
- xh
|
81 |
+
- jv
|
82 |
+
- zh
|
83 |
+
- ja
|
84 |
+
pipeline_tag: zero-shot-image-classification
|
85 |
+
tags:
|
86 |
+
- siglip2
|
87 |
+
- clip
|
88 |
+
- mexma
|
89 |
+
model-index:
|
90 |
+
- name: mexma-siglip2
|
91 |
+
results:
|
92 |
+
- task:
|
93 |
+
type: zero-shot retrieval
|
94 |
+
dataset:
|
95 |
+
name: Crossmodal-3600
|
96 |
+
type: Crossmodal-3600
|
97 |
+
metrics:
|
98 |
+
- name: Image retrieval R@1
|
99 |
+
type: Image retrieval R@1
|
100 |
+
value: 62.54%
|
101 |
+
- name: Text retrieval R@1
|
102 |
+
type: Text retrieval R@1
|
103 |
+
value: 59.99%
|
104 |
+
---
|
105 |
+
|
106 |
+
## Model Summary
|
107 |
+
|
108 |
+
MEXMA-SigLIP2 is a model that combines the [MEXMA](https://huggingface.co/facebook/MEXMA) multilingual text encoder and an image encoder from the
|
109 |
+
[SigLIP2](https://huggingface.co/google/siglip2-so400m-patch16-512/) model. This allows us to get a high-performance CLIP model for 80 languages.
|
110 |
+
MEXMA-SigLIP2 sets new state-of-the-art on the [Crossmodal-3600](https://google.github.io/crossmodal-3600/) dataset with 62.54% R@1 for image retrieval and
|
111 |
+
59.99% R@1 for text retrieval.
|
112 |
+
|
113 |
+
|
114 |
+
## How to use
|
115 |
+
|
116 |
+
```
|
117 |
+
from transformers import AutoModel, AutoTokenizer, AutoImageProcessor
|
118 |
+
from PIL import Image
|
119 |
+
import requests
|
120 |
+
import torch
|
121 |
+
|
122 |
+
model = AutoModel.from_pretrained("visheratin/mexma-siglip2", torch_dtype=torch.bfloat16, trust_remote_code=True, optimized=True).to("cuda")
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained("visheratin/mexma-siglip2")
|
124 |
+
processor = AutoImageProcessor.from_pretrained("visheratin/mexma-siglip2")
|
125 |
+
|
126 |
+
img = Image.open(requests.get("https://static.independent.co.uk/s3fs-public/thumbnails/image/2014/03/25/12/eiffel.jpg", stream=True).raw)
|
127 |
+
img = processor(images=img, return_tensors="pt")["pixel_values"]
|
128 |
+
img = img.to(torch.bfloat16).to("cuda")
|
129 |
+
with torch.inference_mode():
|
130 |
+
text = tokenizer(["кошка", "a dog", "एफिल टॉवर"], return_tensors="pt", padding=True).to("cuda")
|
131 |
+
image_logits, text_logits = model.get_logits(text["input_ids"], text["attention_mask"], img)
|
132 |
+
probs = image_logits.softmax(dim=-1)
|
133 |
+
print(probs)
|
134 |
+
```
|
135 |
+
|
136 |
+
## Acknowledgements
|
137 |
+
|
138 |
+
I thank [ML Collective](https://mlcollective.org/) for providing compute resources to train the model.
|