--- license: apache-2.0 tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: whisper-tiny-finetuned-minds14-en-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 0.3695395513577332 --- # whisper-tiny-finetuned-minds14-en-v2 This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co./openai/whisper-tiny) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.7064 - Wer Ortho: 0.3720 - Wer: 0.3695 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 1.5939 | 7.14 | 50 | 0.6729 | 0.4294 | 0.4032 | | 0.1094 | 14.29 | 100 | 0.5254 | 0.3763 | 0.3642 | | 0.0057 | 21.43 | 150 | 0.5993 | 0.3646 | 0.3607 | | 0.002 | 28.57 | 200 | 0.6255 | 0.3609 | 0.3601 | | 0.0013 | 35.71 | 250 | 0.6444 | 0.3652 | 0.3625 | | 0.0009 | 42.86 | 300 | 0.6603 | 0.3689 | 0.3660 | | 0.0007 | 50.0 | 350 | 0.6736 | 0.3701 | 0.3678 | | 0.0006 | 57.14 | 400 | 0.6857 | 0.3726 | 0.3707 | | 0.0005 | 64.29 | 450 | 0.6965 | 0.3708 | 0.3689 | | 0.0004 | 71.43 | 500 | 0.7064 | 0.3720 | 0.3695 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3