--- base_model: google/gemma-2b library_name: peft license: apache-2.0 datasets: - iamtarun/python_code_instructions_18k_alpaca language: - en pipeline_tag: question-answering tags: - finance --- # Model Card for Model ID A Gemma-2b finetuned LoRA trained on science Q&A - **Developed by:** Venkat ## How to Get Started with the Model ``` import torch from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from peft import PeftModel from typing import Optional import time import os def generate_prompt(input_text: str, instruction: Optional[str] = None) -> str: text = f"### Question: {input_text}\n\n### Answer: " if instruction: text = f"### Instruction: {instruction}\n\n{text}" return text huggingface_token = os.environ.get('HUGGINGFACE_TOKEN') base_model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", token=huggingface_token) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b", token=huggingface_token) lora_model = PeftModel.from_pretrained(base_model, "vdpappu/lora_coding_assistant") merged_model = lora_model.merge_and_unload() eos_token = '' eos_token_id = tokenizer.encode(eos_token, add_special_tokens=False)[-1] generation_config = GenerationConfig( eos_token_id=tokenizer.eos_token_id, min_length=5, max_length=200, do_sample=True, temperature=0.7, top_p=0.9, top_k=50, repetition_penalty=1.5, no_repeat_ngram_size=3, early_stopping=True ) question = "Develop a Python program to clearly understand the concept of recursion." prompt = generate_prompt(input_text=question) with torch.no_grad(): inputs = tokenizer(prompt, return_tensors="pt") output = merged_model.generate(**inputs, generation_config=generation_config) response = tokenizer.decode(output[0], skip_special_tokens=True) print(f"Inference time: {end-start:.2f} seconds") print(response) ``` - PEFT 0.12.0