--- datasets: - mnli tags: - distilbart - distilbart-mnli pipeline_tag: zero-shot-classification --- # DistilBart-MNLI distilbart-mnli is the distilled version of bart-large-mnli created using the **No Teacher Distillation** technique proposed for BART summarisation by Huggingface, [here](https://github.com/huggingface/transformers/tree/master/examples/seq2seq#distilbart). We just copy alternating layers from `bart-large-mnli` and finetune more on the same data. | | matched acc | mismatched acc | | ------------------------------------------------------------------------------------ | ----------- | -------------- | | [bart-large-mnli](https://huggingface.co./facebook/bart-large-mnli) (baseline, 12-12) | 89.9 | 90.01 | | [distilbart-mnli-12-1](https://huggingface.co./valhalla/distilbart-mnli-12-1) | 87.08 | 87.5 | | [distilbart-mnli-12-3](https://huggingface.co./valhalla/distilbart-mnli-12-3) | 88.1 | 88.19 | | [distilbart-mnli-12-6](https://huggingface.co./valhalla/distilbart-mnli-12-6) | 89.19 | 89.01 | | [distilbart-mnli-12-9](https://huggingface.co./valhalla/distilbart-mnli-12-9) | 89.56 | 89.52 | This is a very simple and effective technique, as we can see the performance drop is very little. Detailed performace trade-offs will be posted in this [sheet](https://docs.google.com/spreadsheets/d/1dQeUvAKpScLuhDV1afaPJRRAE55s2LpIzDVA5xfqxvk/edit?usp=sharing). ## Fine-tuning If you want to train these models yourself, clone the [distillbart-mnli repo](https://github.com/patil-suraj/distillbart-mnli) and follow the steps below Clone and install transformers from source ```bash git clone https://github.com/huggingface/transformers.git pip install -qqq -U ./transformers ``` Download MNLI data ```bash python transformers/utils/download_glue_data.py --data_dir glue_data --tasks MNLI ``` Create student model ```bash python create_student.py \ --teacher_model_name_or_path facebook/bart-large-mnli \ --student_encoder_layers 12 \ --student_decoder_layers 6 \ --save_path student-bart-mnli-12-6 \ ``` Start fine-tuning ```bash python run_glue.py args.json ``` You can find the logs of these trained models in this [wandb project](https://wandb.ai/psuraj/distilbart-mnli).