DeepSeek-V3 / inference /fp8_cast_bf16.py
danielhanchen's picture
Upload folder using huggingface_hub
bfa32d5 verified
import os
import json
from argparse import ArgumentParser
from glob import glob
from tqdm import tqdm
import torch
from safetensors.torch import load_file, save_file
from kernel import weight_dequant
def main(fp8_path, bf16_path):
torch.set_default_dtype(torch.bfloat16)
os.makedirs(bf16_path, exist_ok=True)
model_index_file = os.path.join(fp8_path, "model.safetensors.index.json")
with open(model_index_file, "r") as f:
model_index = json.load(f)
weight_map = model_index["weight_map"]
# Cache for loaded safetensor files
loaded_files = {}
fp8_weight_names = []
# Helper function to get tensor from the correct file
def get_tensor(tensor_name):
file_name = weight_map[tensor_name]
if file_name not in loaded_files:
file_path = os.path.join(fp8_path, file_name)
loaded_files[file_name] = load_file(file_path, device="cuda")
return loaded_files[file_name][tensor_name]
safetensor_files = list(glob(os.path.join(fp8_path, "*.safetensors")))
safetensor_files.sort()
for safetensor_file in tqdm(safetensor_files):
file_name = os.path.basename(safetensor_file)
current_state_dict = load_file(safetensor_file, device="cuda")
loaded_files[file_name] = current_state_dict
new_state_dict = {}
for weight_name, weight in current_state_dict.items():
if weight_name.endswith("_scale_inv"):
continue
elif weight.element_size() == 1: # FP8 weight
scale_inv_name = f"{weight_name}_scale_inv"
try:
# Get scale_inv from the correct file
scale_inv = get_tensor(scale_inv_name)
fp8_weight_names.append(weight_name)
new_state_dict[weight_name] = weight_dequant(weight, scale_inv)
except KeyError:
print(f"Warning: Missing scale_inv tensor for {weight_name}, skipping conversion")
new_state_dict[weight_name] = weight
else:
new_state_dict[weight_name] = weight
new_safetensor_file = os.path.join(bf16_path, file_name)
save_file(new_state_dict, new_safetensor_file)
# Memory management: keep only the 2 most recently used files
if len(loaded_files) > 2:
oldest_file = next(iter(loaded_files))
del loaded_files[oldest_file]
torch.cuda.empty_cache()
# Update model index
new_model_index_file = os.path.join(bf16_path, "model.safetensors.index.json")
for weight_name in fp8_weight_names:
scale_inv_name = f"{weight_name}_scale_inv"
if scale_inv_name in weight_map:
weight_map.pop(scale_inv_name)
with open(new_model_index_file, "w") as f:
json.dump({"metadata": {}, "weight_map": weight_map}, f, indent=2)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--input-fp8-hf-path", type=str, required=True)
parser.add_argument("--output-bf16-hf-path", type=str, required=True)
args = parser.parse_args()
main(args.input_fp8_hf_path, args.output_bf16_hf_path)