danielhanchen
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -46,6 +46,16 @@ tags:
|
|
46 |
|
47 |
So, **1 + 1 = 2**. [end of text]
|
48 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
# Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
|
51 |
We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
|
|
|
46 |
|
47 |
So, **1 + 1 = 2**. [end of text]
|
48 |
```
|
49 |
+
5. If you have a GPU (RTX 4090 for example) with 24GB, you can offload 5 layers to the GPU for faster processing. If you have multiple GPUs, you can probably offload more layers.
|
50 |
+
```bash
|
51 |
+
./llama.cpp/llama-cli
|
52 |
+
--model unsloth/DeepSeek-V3-GGUF/DeepSeek-V3-Q2_K_XS/DeepSeek-V3-Q2_K_XS-00001-of-00005.gguf
|
53 |
+
--cache-type-k q5_0
|
54 |
+
--threads 16
|
55 |
+
--prompt '<|User|>What is 1+1?<|Assistant|>'
|
56 |
+
--n-gpu-layers 5
|
57 |
+
```
|
58 |
+
6. Use `q4_0` KV cache for even faster workloads at the expense of some degraded accuracy.
|
59 |
|
60 |
# Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
|
61 |
We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
|