from typing import List, Optional, Tuple, Union import torch import torch.nn as nn from transformers import LlamaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from .configuration_llama_action import LlamaActionConfig class LearnableFactorizedSpatioTemporalPositionalEmbedding(nn.Module): def __init__(self, num_spatio_embeddings: int, num_temporal_embeddings: int, embedding_dim: int): super().__init__() self.spatio_embeddings = nn.Embedding(num_spatio_embeddings, embedding_dim) self.temporal_embeddings = nn.Embedding(num_temporal_embeddings, embedding_dim) self.num_spatio_embeddings = num_spatio_embeddings self.num_temporal_embeddings = num_temporal_embeddings def forward(self, attention_mask: torch.LongTensor, past_key_values_length: int): seq_length = attention_mask.size(1) batch_size = attention_mask.size(0) if past_key_values_length == 0: # create a tensor of the form [0, 1, 2, ..., num_spatio_embeddings-1] spatio_indices = torch.arange( self.num_spatio_embeddings, device=attention_mask.device ).repeat(self.num_temporal_embeddings).unsqueeze(0).repeat((batch_size, 1)) # create a tensor of the form [0, 0, 0, ..., 1, 1, 1, ..., 2, 2, 2, ...] temporal_indices = torch.arange( self.num_temporal_embeddings, device=attention_mask.device ).repeat_interleave(self.num_spatio_embeddings).unsqueeze(0).repeat((batch_size, 1)) spatio_indices = spatio_indices[:, :seq_length] temporal_indices = temporal_indices[:, :seq_length] else: temporal_index = past_key_values_length // self.num_spatio_embeddings spatio_index = past_key_values_length % self.num_spatio_embeddings spatio_indices = torch.tensor([[spatio_index]], device=attention_mask.device).repeat((batch_size, 1)) temporal_indices = torch.tensor([[temporal_index]], device=attention_mask.device).repeat((batch_size, 1)) return self.spatio_embeddings(spatio_indices) + self.temporal_embeddings(temporal_indices) class LlamaActionForCausalLM(LlamaForCausalLM): config_class = LlamaActionConfig def __init__(self, config: LlamaActionConfig): super().__init__(config) self.num_spatio_embeddings = config.num_spatio_embeddings self.num_temporal_embeddings = config.num_temporal_embeddings self.num_image_patches = config.num_image_patches self.num_action_embeddings = config.num_action_embeddings self.pos_embedding_spatio_temporal = LearnableFactorizedSpatioTemporalPositionalEmbedding( config.num_spatio_embeddings, config.num_temporal_embeddings, config.hidden_size, ) self.action_projection = nn.Linear(config.action_dim, config.hidden_size) self.post_init() def forward( self, input_ids: Optional[torch.Tensor] = None, actions: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, past_key_values: Optional[List[torch.Tensor]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: pass elif inputs_embeds is not None: pass else: raise ValueError("You have to specify either input_ids or inputs_embeds") inputs_embeds = self.model.get_input_embeddings()(input_ids) if past_key_values is None or len(past_key_values) == 0: inputs_embeds_list = torch.split( inputs_embeds, split_size_or_sections=self.num_image_patches, dim=1 ) actions_list = torch.split( actions, split_size_or_sections=self.num_action_embeddings, dim=1 ) embeddings = [] if len(inputs_embeds_list) == len(actions_list): # mostly used in training phase for inputs_embeds, action_embeds in zip(inputs_embeds_list, actions_list): action_features = self.action_projection(action_embeds) embeddings.append(inputs_embeds) embeddings.append(action_features) elif len(inputs_embeds_list) < len(actions_list): # used in inference phase (mostly) for i, inputs_embeds in enumerate(inputs_embeds_list): embeddings.append(inputs_embeds) if i < len(inputs_embeds_list) - 1: # the last frame might be generating image tokens, so we don't add action embedding action_embeds = self.action_projection(actions_list[i]) embeddings.append(action_embeds) if inputs_embeds_list[-1].size(1) == self.num_image_patches: # if the last frame has generated all image tokens, we add action embedding action_embeds = self.action_projection(actions_list[len(inputs_embeds_list) - 1]) embeddings.append(action_embeds) else: if isinstance(past_key_values, tuple): past_key_values_length = past_key_values[0][0].size(2) else: past_key_values_length = past_key_values.get_seq_length() embeddings = [] # create an interleaved sequence of image and action embeddings like image, image, ..., image, action, action, ..., action # we only generate image tokens, so we add action tokens after generating one frame if past_key_values_length % self.num_spatio_embeddings == (self.num_spatio_embeddings - self.num_action_embeddings): seq_index = past_key_values_length // self.num_spatio_embeddings + 1 actions_list = torch.split( actions, split_size_or_sections=self.num_action_embeddings, dim=1 ) action_features = self.action_projection(actions_list[seq_index - 1]) embeddings.append(action_features) embeddings.append(inputs_embeds) else: pass if len(embeddings) > 0: inputs_embeds = torch.cat(embeddings, dim=1) # insert spatio-temporal positional embedding if past_key_values is not None: if isinstance(past_key_values, tuple): past_key_values_length = past_key_values[0][0].size(2) else: past_key_values_length = past_key_values.get_seq_length() else: past_key_values_length = 0 inputs_embeds += self.pos_embedding_spatio_temporal(inputs_embeds, past_key_values_length) outputs = self.model( input_ids=None, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.lm_head(sequence_output).contiguous() loss = None if labels is not None: shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() loss_fct = nn.CrossEntropyLoss() loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1)) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def prepare_inputs_for_generation( self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, progress_bar=None, **kwargs): batch_size = input_ids.size(0) seq_length = input_ids.size(1) n_frames = seq_length // self.num_image_patches attention_mask_length = n_frames * (self.num_image_patches + self.num_action_embeddings) if progress_bar is not None: progress_bar.update() if seq_length % self.num_image_patches != 0: n_last_frame_tokens = seq_length % self.num_image_patches attention_mask_length += n_last_frame_tokens attention_mask = torch.ones((batch_size, attention_mask_length), device=input_ids.device, dtype=torch.long) # cut decoder_input_ids if past_key_values is used if past_key_values is not None and len(past_key_values) > 0: if isinstance(past_key_values, tuple): past_length = past_key_values[0][0].size(2) else: past_length = past_key_values.get_seq_length() if input_ids.size(1) > past_length: remove_prefix_length = past_length else: remove_prefix_length = input_ids.size(1) - 1 input_ids = input_ids[:, remove_prefix_length:] seq_length = input_ids.size(1) past_key_values_length = past_length mask_seq_length = seq_length + past_key_values_length if past_key_values_length % self.num_spatio_embeddings == (self.num_spatio_embeddings - self.num_action_embeddings): mask_seq_length += self.num_action_embeddings attention_mask = torch.ones((batch_size, mask_seq_length), device=input_ids.device, dtype=torch.long) return { "input_ids": input_ids, "attention_mask": attention_mask, "actions": kwargs.get("actions"), "past_key_values": past_key_values, "use_cache": use_cache, } class LlamaActionV2ForCausalLM(LlamaActionForCausalLM): config_class = LlamaActionConfig def __init__(self, config: LlamaActionConfig): super().__init__(config) self.action_projection = nn.Sequential( nn.Linear(config.action_dim, config.hidden_size), nn.ReLU(), nn.Linear(config.hidden_size, config.hidden_size), nn.ReLU(), nn.Linear(config.hidden_size, config.hidden_size), ) self.post_init()