File size: 7,214 Bytes
13f4da1
 
07bed14
13f4da1
 
 
 
 
 
 
edcd145
 
 
 
 
0be3fe2
edcd145
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13f4da1
 
 
 
bef30ed
 
0be3fe2
13f4da1
b2bb91b
 
d6b6f60
 
 
 
 
 
 
 
 
 
 
 
 
b2bb91b
80b05a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13f4da1
 
 
 
 
 
 
 
 
 
 
 
 
 
edcd145
13f4da1
 
 
 
0be3fe2
4762718
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

---
license: cc-by-nc-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
pipeline_tag: token-classification
widget:
- text: "Amelia Earthart voló su Lockheed Vega 5B monomotor a través del Océano Atlántico hasta París ."
  example_title: "Spanish"
- text: "Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris ."
  example_title: "English"
- text: "Amelia Earthart a fait voler son monomoteur Lockheed Vega 5B à travers l' ocean Atlantique jusqu'à Paris ."
  example_title: "French"
- text: "Amelia Earthart flog mit ihrer einmotorigen Lockheed Vega 5B über den Atlantik nach Paris ."
  example_title: "German"
- text: "Амелия Эртхарт перелетела на своем одномоторном самолете Lockheed Vega 5B через Атлантический океан в Париж ."
  example_title: "Russian"
- text: "Amelia Earthart vloog met haar één-motorige Lockheed Vega 5B over de Atlantische Oceaan naar Parijs ."
  example_title: "Dutch"
- text: "Amelia Earthart przeleciała swoim jednosilnikowym samolotem Lockheed Vega 5B przez Ocean Atlantycki do Paryża ."
  example_title: "Polish"
- text: "Amelia Earthart flaug eins hreyfils Lockheed Vega 5B yfir Atlantshafið til Parísar ."
  example_title: "Icelandic"
- text: "Η Amelia Earthart πέταξε το μονοκινητήριο Lockheed Vega 5B της πέρα ​​από τον Ατλαντικό Ωκεανό στο Παρίσι ."
  example_title: "Greek"
model-index:
  - name: SpanMarker w. xlm-roberta-base on MultiNERD by Tom Aarsen
    results:
      - task:
          type: token-classification
          name: Named Entity Recognition
        dataset:
          type: Babelscape/multinerd
          name: MultiNERD
          split: test
          revision: 2814b78e7af4b5a1f1886fe7ad49632de4d9dd25
        metrics:
          - type: f1
            value: 0.91314
            name: F1
          - type: precision
            value: 0.91994
            name: Precision
          - type: recall
            value: 0.90643
            name: Recall
datasets:
  - Babelscape/multinerd
language:
  - multilingual
metrics:
  - f1
  - recall
  - precision
---

# SpanMarker for Named Entity Recognition

**Note**: Due to major [tokenization limitations](#Limitations), this model is deprecated in favor of the much superior [tomaarsen/span-marker-mbert-base-multinerd](https://huggingface.co./tomaarsen/span-marker-mbert-base-multinerd) model.

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model that can be used for multilingual Named Entity Recognition trained on the [MultiNERD](https://huggingface.co./datasets/Babelscape/multinerd) dataset. In particular, this SpanMarker model uses [xlm-roberta-base](https://huggingface.co./xlm-roberta-base) as the underlying encoder. See [train.py](train.py) for the training script.

## Metrics

| **Language** | **Precision** | **Recall** | **F1**     |
|--------------|---------------|------------|------------|
| **all**      | 91.99         | 90.64      | **91.31**  |
| **de**       | 93.56         | 93.87      | **93.77**  |
| **en**       | 94.01         | 95.10      | **94.55**  |
| **es**       | 92.58         | 89.13      | **90.82**  |
| **fr**       | 93.23         | 88.68      | **90.90**  |
| **it**       | 90.23         | 92.60      | **93.40**  |
| **nl**       | 93.61         | 91.36      | **92.47**  |
| **pl**       | 92.51         | 90.81      | **91.66**  |
| **pt**       | 93.29         | 90.22      | **91.73**  |
| **ru**       | 92.37         | 92.91      | **92.64**  |
| **zh**       | 83.23         | 81.55      | **82.38**  |

## Label set

| Class | Description | Examples |
|-------|-------------|----------|
PER (person) | People | Ray Charles, Jessica Alba, Leonardo DiCaprio, Roger Federer, Anna Massey. |
ORG (organization) | Associations, companies, agencies, institutions, nationalities and religious or political groups | University of Edinburgh, San Francisco Giants, Google, Democratic Party. |
LOC (location) | Physical locations (e.g. mountains, bodies of water), geopolitical entities (e.g. cities, states), and facilities (e.g. bridges, buildings, airports). | Rome, Lake Paiku, Chrysler Building, Mount Rushmore, Mississippi River. |
ANIM (animal) | Breeds of dogs, cats and other animals, including their scientific names. | Maine Coon, African Wild Dog, Great White Shark, New Zealand Bellbird. |
BIO (biological) | Genus of fungus, bacteria and protoctists, families of viruses, and other biological entities. | Herpes Simplex Virus, Escherichia Coli, Salmonella, Bacillus Anthracis. |
CEL (celestial) | Planets, stars, asteroids, comets, nebulae, galaxies and other astronomical objects. | Sun, Neptune, Asteroid 187 Lamberta, Proxima Centauri, V838 Monocerotis. |
DIS (disease) | Physical, mental, infectious, non-infectious, deficiency, inherited, degenerative, social and self-inflicted diseases. | Alzheimer’s Disease, Cystic Fibrosis, Dilated Cardiomyopathy, Arthritis. |
EVE (event) | Sport events, battles, wars and other events. | American Civil War, 2003 Wimbledon Championships, Cannes Film Festival. |
FOOD (food) | Foods and drinks. | Carbonara, Sangiovese, Cheddar Beer Fondue, Pizza Margherita. |
INST (instrument) | Technological instruments, mechanical instruments, musical instruments, and other tools. | Spitzer Space Telescope, Commodore 64, Skype, Apple Watch, Fender Stratocaster. |
MEDIA (media) | Titles of films, books, magazines, songs and albums, fictional characters and languages. | Forbes, American Psycho, Kiss Me Once, Twin Peaks, Disney Adventures. |
PLANT (plant) | Types of trees, flowers, and other plants, including their scientific names. | Salix, Quercus Petraea, Douglas Fir, Forsythia, Artemisia Maritima. |
MYTH (mythological) | Mythological and religious entities. | Apollo, Persephone, Aphrodite, Saint Peter, Pope Gregory I, Hercules. |
TIME (time) | Specific and well-defined time intervals, such as eras, historical periods, centuries, years and important days. No months and days of the week. | Renaissance, Middle Ages, Christmas, Great Depression, 17th Century, 2012. |
VEHI (vehicle) | Cars, motorcycles and other vehicles. | Ferrari Testarossa, Suzuki Jimny, Honda CR-X, Boeing 747, Fairey Fulmar.

## Usage

To use this model for inference, first install the `span_marker` library:

```bash
pip install span_marker
```

You can then run inference with this model like so:

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-base-multinerd")
# Run inference
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
```

See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.

## Contributions
Many thanks to [Simone Tedeschi](https://huggingface.co./sted97) from [Babelscape](https://babelscape.com) for his insight when training this model and his involvement in the creation of the training dataset.