--- language: - en license: apache-2.0 library_name: span-marker tags: - span-marker - token-classification - ner - named-entity-recognition - generated_from_span_marker_trainer datasets: - acronym_identification metrics: - precision - recall - f1 widget: - text: "here, da = direct assessment, rr = relative ranking, ds = discrete scale and cs = continuous scale." example_title: "Uncased 1" - text: "modifying or replacing the erasable programmable read only memory (eprom) in a phone would allow the configuration of any esn and min via software for cellular devices." example_title: "Uncased 2" - text: "we propose a technique called aggressive stochastic weight averaging (aswa) and an extension called norm-filtered aggressive stochastic weight averaging (naswa) which improves te stability of models over random seeds." example_title: "Uncased 3" - text: "the choice of the encoder and decoder modules of dnpg can be quite flexible, for instance long-short term memory networks (lstm) or convolutional neural network (cnn)." example_title: "Uncased 4" pipeline_tag: token-classification co2_eq_emissions: emissions: 31.203903222402037 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.272 hardware_used: 1 x NVIDIA GeForce RTX 3090 base_model: bert-base-uncased model-index: - name: SpanMarker with bert-base-uncased on Acronym Identification results: - task: type: token-classification name: Named Entity Recognition dataset: name: Acronym Identification type: acronym_identification split: validation metrics: - type: f1 value: 0.9198933333333332 name: F1 - type: precision value: 0.9339397877409573 name: Precision - type: recall value: 0.9062631357713324 name: Recall --- # SpanMarker with bert-base-uncased on Acronym Identification This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [Acronym Identification](https://huggingface.co./datasets/acronym_identification) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co./bert-base-uncased) as the underlying encoder. See [train.py](train.py) for the training script. Is your data always capitalized correctly? Then consider using the cased variant of this model instead for better performance: [tomaarsen/span-marker-bert-base-acronyms](https://huggingface.co./tomaarsen/span-marker-bert-base-acronyms). ## Model Details ### Model Description - **Model Type:** SpanMarker - **Encoder:** [bert-base-uncased](https://huggingface.co./bert-base-uncased) - **Maximum Sequence Length:** 256 tokens - **Maximum Entity Length:** 8 words - **Training Dataset:** [Acronym Identification](https://huggingface.co./datasets/acronym_identification) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER) - **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------| | long | "successive convex approximation", "controlled natural language", "Conversational Question Answering" | | short | "SODA", "CNL", "CoQA" | ## Evaluation ### Metrics | Label | Precision | Recall | F1 | |:--------|:----------|:-------|:-------| | **all** | 0.9339 | 0.9063 | 0.9199 | | long | 0.9314 | 0.8845 | 0.9074 | | short | 0.9352 | 0.9174 | 0.9262 | ## Uses ### Direct Use for Inference ```python from span_marker import SpanMarkerModel # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-acronyms") # Run inference entities = model.predict("compression algorithms like principal component analysis (pca) can reduce noise and complexity.") ``` ### Downstream Use You can finetune this model on your own dataset.
Click to expand ```python from span_marker import SpanMarkerModel, Trainer # Download from the 🤗 Hub model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-acronyms") # Specify a Dataset with "tokens" and "ner_tag" columns dataset = load_dataset("conll2003") # For example CoNLL2003 # Initialize a Trainer using the pretrained model & dataset trainer = Trainer( model=model, train_dataset=dataset["train"], eval_dataset=dataset["validation"], ) trainer.train() trainer.save_model("tomaarsen/span-marker-bert-base-uncased-acronyms-finetuned") ```
## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:----------------------|:----|:--------|:----| | Sentence length | 4 | 32.3372 | 170 | | Entities per sentence | 0 | 2.6775 | 24 | ### Training Hyperparameters - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2 ### Training Results | Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy | |:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:| | 0.3120 | 200 | 0.0097 | 0.8999 | 0.8731 | 0.8863 | 0.9718 | | 0.6240 | 400 | 0.0075 | 0.9163 | 0.8995 | 0.9078 | 0.9769 | | 0.9360 | 600 | 0.0076 | 0.9079 | 0.9153 | 0.9116 | 0.9773 | | 1.2480 | 800 | 0.0069 | 0.9267 | 0.9006 | 0.9135 | 0.9778 | | 1.5601 | 1000 | 0.0065 | 0.9268 | 0.9044 | 0.9154 | 0.9782 | | 1.8721 | 1200 | 0.0065 | 0.9279 | 0.9061 | 0.9168 | 0.9787 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Carbon Emitted**: 0.031 kg of CO2 - **Hours Used**: 0.272 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.9.16 - SpanMarker: 1.3.1.dev - Transformers: 4.30.0 - PyTorch: 2.0.1+cu118 - Datasets: 2.14.0 - Tokenizers: 0.13.2 ## Citation ### BibTeX ``` @software{Aarsen_SpanMarker, author = {Aarsen, Tom}, license = {Apache-2.0}, title = {{SpanMarker for Named Entity Recognition}}, url = {https://github.com/tomaarsen/SpanMarkerNER} } ```