--- tags: - clip - siglip library_name: open_clip pipeline_tag: zero-shot-image-classification license: apache-2.0 datasets: - webli --- # Model card for ViT-B-16-SigLIP A SigLIP (Sigmoid loss for Language-Image Pre-training) model trained on WebLI. This model has been converted to PyTorch from the original JAX checkpoints in [Big Vision](https://github.com/google-research/big_vision). These weights are usable in both OpenCLIP (image + text) and timm (image only). ## Model Details - **Model Type:** Contrastive Image-Text, Zero-Shot Image Classification. - **Original:** https://github.com/google-research/big_vision - **Dataset:** WebLI - **Papers:** - Sigmoid loss for language image pre-training: https://arxiv.org/abs/2303.15343 ## Model Usage ### With OpenCLIP ``` import torch import torch.nn.functional as F from urllib.request import urlopen from PIL import Image from open_clip import create_model_from_pretrained, get_tokenizer # works on open-clip-torch>=2.23.0, timm>=0.9.8 model, preprocess = create_model_from_pretrained('hf-hub:timm/ViT-B-16-SigLIP') tokenizer = get_tokenizer('hf-hub:timm/ViT-B-16-SigLIP') image = Image.open(urlopen( 'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) image = preprocess(image).unsqueeze(0) labels_list = ["a dog", "a cat", "a donut", "a beignet"] text = tokenizer(labels_list, context_length=model.context_length) with torch.no_grad(), torch.cuda.amp.autocast(): image_features = model.encode_image(image) text_features = model.encode_text(text) image_features = F.normalize(image_features, dim=-1) text_features = F.normalize(text_features, dim=-1) text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias) zipped_list = list(zip(labels_list, [round(p.item(), 3) for p in text_probs[0]])) print("Label probabilities: ", zipped_list) ``` ### With `timm` (for image embeddings) ```python from urllib.request import urlopen from PIL import Image import timm image = Image.open(urlopen( 'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' )) model = timm.create_model( 'vit_base_patch16_siglip_224', pretrained=True, num_classes=0, ) model = model.eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(image).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor ``` ## Citation ```bibtex @article{zhai2023sigmoid, title={Sigmoid loss for language image pre-training}, author={Zhai, Xiaohua and Mustafa, Basil and Kolesnikov, Alexander and Beyer, Lucas}, journal={arXiv preprint arXiv:2303.15343}, year={2023} } ``` ```bibtex @misc{big_vision, author = {Beyer, Lucas and Zhai, Xiaohua and Kolesnikov, Alexander}, title = {Big Vision}, year = {2022}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/google-research/big_vision}} } ```