--- language: - en - fr - es - pt license: other library_name: transformers tags: - falcon3 license_name: falcon-llm-license license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html model-index: - name: Falcon3-10B-Base results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 36.48 name: strict accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 41.38 name: normalized accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 24.77 name: exact match source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 12.75 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 14.17 name: acc_norm source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 36.0 name: accuracy source: url: https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard?query=tiiuae/Falcon3-10B-Base name: Open LLM Leaderboard ---
drawing
# Falcon3-10B-Base **Falcon3** family of Open Foundation Models is a set of pretrained and instruct LLMs ranging from 1B to 10B parameters. This repository contains the **Falcon3-10B-Base**. It achieves state-of-the-art results (at the time of release) on reasoning, language understanding, instruction following, code and mathematics tasks. Falcon3-10B-Base supports 4 languages (English, French, Spanish, Portuguese) and a context length of up to 32K. ⚠️ **This is a raw, pretrained model, which should be further finetuned using SFT, RLHF, continued pretraining, etc. for most use cases.** ## Model Details - Architecture - Transformer-based causal decoder-only architecture - 40 decoder blocks - Grouped Query Attention (GQA) for faster inference: 12 query heads and 4 key-value heads - Wider head dimension: 256 - High RoPE value to support long context understanding: 1000042 - Uses SwiGLu and RMSNorm - 32K context length - 131K vocab size - Depth up-scaled from **Falcon3-7B-Base** with continual pretraining on 2 Teratokens of datasets comprising of web, code, STEM, high quality and mutlilingual data using 1024 H100 GPU chips - Supports EN, FR, ES, PT - Developed by [Technology Innovation Institute](https://www.tii.ae) - License: TII Falcon-LLM License 2.0 - Model Release Date: December 2024 ## Getting started
Click to expand ```python import torch from transformers import pipeline pipe = pipeline( "text-generation", model="tiiuae/Falcon3-10B-Base", torch_dtype=torch.bfloat16, device_map="auto" ) response = pipe("Question: How many hours in one day? Answer: ") print(response[0]['generated_text']) ```

## Benchmarks We report in the following table our internal pipeline benchmarks. - We use [lm-evaluation harness](https://github.com/EleutherAI/lm-evaluation-harness). - We report **raw scores**. - We use same batch-size across all models.
Category Benchmark Gemma2-9B Yi1.5-9B Mistral-Nemo-Base-2407 (12B) Falcon3-10B-Base
General MMLU (5-shot) 70.8 69.6 68.8 73.1
MMLU-PRO (5-shot) 41.4 39.3 34.7 42.5
IFEval 21.3 29.1 16.1 36.4
Math GSM8K (5-shot) 69.1 63.8 55.3 81.4
MATH Lvl-5 (4-shot) 10.5 9.2 4.9 22.9
Reasoning Arc Challenge (25-shot) 67.5 61.7 64.4 66.8
GPQA (0-shot) 33.4 36.6 28.8 34.1
MUSR (0-shot) 45.3 43.3 39.2 44.2
BBH (3-shot) 54.3 51.3 50.2 59.7
CommonSense Understanding PIQA (0-shot) 83.0 80.5 82.1 79.4
SciQ (0-shot) 97.1 95.2 95.2 93.5
Winogrande (0-shot) 74.2 72.7 73.2 73.6
OpenbookQA (0-shot) 47.2 45.2 47.2 45.0
## Useful links - View our [release blogpost](https://huggingface.co./blog/falcon3). - Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers. ## Technical Report Coming soon.... ## Citation If the Falcon3 family of models were helpful to your work, feel free to give us a cite. ``` @misc{Falcon3, title = {The Falcon 3 Family of Open Models}, url = {https://huggingface.co./blog/falcon3}, author = {Falcon-LLM Team}, month = {December}, year = {2024} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co./spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co./datasets/open-llm-leaderboard/tiiuae__Falcon3-10B-Base-details) | Metric |Value| |-------------------|----:| |Avg. |27.59| |IFEval (0-Shot) |36.48| |BBH (3-Shot) |41.38| |MATH Lvl 5 (4-Shot)|24.77| |GPQA (0-shot) |12.75| |MuSR (0-shot) |14.17| |MMLU-PRO (5-shot) |36.00|