File size: 1,126 Bytes
a253351 165d660 858f9e3 a253351 4dc412e a253351 858f9e3 a253351 858f9e3 a253351 858f9e3 a253351 858f9e3 a253351 4dc412e a253351 858f9e3 a253351 858f9e3 a253351 858f9e3 a253351 858f9e3 a253351 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
library_name: peft
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
datasets:
- BI55/MedText
- keivalya/MedQuad-MedicalQnADataset
pipeline_tag: text-generation
---
# TinyLlama 1.1B Medical 🤏🦙
### Model Description
A smaller version of https://huggingface.co./therealcyberlord/llama2-qlora-finetuned-medical, which used Llama 2 7B.
Finetuned on <|user|> <|assistant|> instructions
## How to Get Started with the Model
```
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
config = PeftConfig.from_pretrained("therealcyberlord/TinyLlama-1.1B-Medical")
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
model = PeftModel.from_pretrained(model, "therealcyberlord/TinyLlama-1.1B-Medical")
```
## Training Details
### Training Data
Used two data sources:
**BI55/MedText**: https://huggingface.co./datasets/BI55/MedText
**MedQuad-MedicalQnADataset**: https://huggingface.co./datasets/keivalya/MedQuad-MedicalQnADataset
### Training Procedure
Trained on 1000 steps on a shuffled **combined** dataset
### Framework versions
- PEFT 0.7.2.dev0 |