File size: 1,126 Bytes
a253351
 
 
165d660
 
 
858f9e3
a253351
 
4dc412e
a253351
 
 
858f9e3
a253351
858f9e3
a253351
 
 
 
858f9e3
 
 
a253351
858f9e3
 
 
 
a253351
 
 
 
 
4dc412e
a253351
858f9e3
a253351
858f9e3
a253351
 
858f9e3
a253351
858f9e3
a253351
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
---
library_name: peft
base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0
datasets:
- BI55/MedText
- keivalya/MedQuad-MedicalQnADataset
pipeline_tag: text-generation
---

# TinyLlama 1.1B Medical 🤏🦙

### Model Description

A smaller version of https://huggingface.co./therealcyberlord/llama2-qlora-finetuned-medical, which used Llama 2 7B. 

Finetuned on <|user|> <|assistant|> instructions


## How to Get Started with the Model

```
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM

config = PeftConfig.from_pretrained("therealcyberlord/TinyLlama-1.1B-Medical")
model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
model = PeftModel.from_pretrained(model, "therealcyberlord/TinyLlama-1.1B-Medical")
```

## Training Details

### Training Data

Used two data sources:

**BI55/MedText**: https://huggingface.co./datasets/BI55/MedText

**MedQuad-MedicalQnADataset**: https://huggingface.co./datasets/keivalya/MedQuad-MedicalQnADataset


### Training Procedure 

Trained on 1000 steps on a shuffled **combined** dataset


### Framework versions

- PEFT 0.7.2.dev0