--- license: creativeml-openrail-m base_model: "terminusresearch/pixart-900m-1024" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - full inference: true --- # pixart-900m-1024-ft-large This is a full rank finetune derived from [terminusresearch/pixart-900m-1024](https://huggingface.co./terminusresearch/pixart-900m-1024). The main validation prompt used during training was: ``` ethnographic photography of teddy bear at a picnic holding a sign that says SOON, sitting next to a red sphere which is inside a capsule ``` ## Validation settings - CFG: `8.5` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `euler` - Seed: `42` - Resolutions: `1024x1024,1280x768,960x1152` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 1 - Training steps: 6500 - Learning rate: 1e-06 - Effective batch size: 384 - Micro-batch size: 24 - Gradient accumulation steps: 2 - Number of GPUs: 8 - Prediction type: epsilon - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Not used ## Datasets ### photo-concept-bucket - Repeats: 0 - Total number of images: ~559104 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### dalle3 - Repeats: 0 - Total number of images: ~972672 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: center - Crop aspect: square ### nijijourney-v6-520k-raw - Repeats: 0 - Total number of images: ~415872 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: center - Crop aspect: square ### midjourney-v6-520k-raw - Repeats: 0 - Total number of images: ~390912 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: center - Crop aspect: square ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = "pixart-900m-1024-ft-large" prompt = "ethnographic photography of teddy bear at a picnic holding a sign that says SOON, sitting next to a red sphere which is inside a capsule" negative_prompt = "malformed, disgusting, overexposed, washed-out" pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry', num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=8.5, guidance_rescale=0.0, ).images[0] image.save("output.png", format="PNG") ```