---
license: apache-2.0
language:
- en
tags:
- merge
- moe
- TensorBlock
- GGUF
base_model: Kquant03/Ryu-4x7B-MoE-bf16
---
## Kquant03/Ryu-4x7B-MoE-bf16 - GGUF
This repo contains GGUF format model files for [Kquant03/Ryu-4x7B-MoE-bf16](https://huggingface.co./Kquant03/Ryu-4x7B-MoE-bf16).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Ryu-4x7B-MoE-bf16-Q2_K.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q2_K.gguf) | Q2_K | 8.843 GB | smallest, significant quality loss - not recommended for most purposes |
| [Ryu-4x7B-MoE-bf16-Q3_K_S.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q3_K_S.gguf) | Q3_K_S | 10.433 GB | very small, high quality loss |
| [Ryu-4x7B-MoE-bf16-Q3_K_M.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q3_K_M.gguf) | Q3_K_M | 11.580 GB | very small, high quality loss |
| [Ryu-4x7B-MoE-bf16-Q3_K_L.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q3_K_L.gguf) | Q3_K_L | 12.544 GB | small, substantial quality loss |
| [Ryu-4x7B-MoE-bf16-Q4_0.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q4_0.gguf) | Q4_0 | 13.624 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Ryu-4x7B-MoE-bf16-Q4_K_S.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q4_K_S.gguf) | Q4_K_S | 13.743 GB | small, greater quality loss |
| [Ryu-4x7B-MoE-bf16-Q4_K_M.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q4_K_M.gguf) | Q4_K_M | 14.610 GB | medium, balanced quality - recommended |
| [Ryu-4x7B-MoE-bf16-Q5_0.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q5_0.gguf) | Q5_0 | 16.626 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Ryu-4x7B-MoE-bf16-Q5_K_S.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q5_K_S.gguf) | Q5_K_S | 16.626 GB | large, low quality loss - recommended |
| [Ryu-4x7B-MoE-bf16-Q5_K_M.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q5_K_M.gguf) | Q5_K_M | 17.134 GB | large, very low quality loss - recommended |
| [Ryu-4x7B-MoE-bf16-Q6_K.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q6_K.gguf) | Q6_K | 19.817 GB | very large, extremely low quality loss |
| [Ryu-4x7B-MoE-bf16-Q8_0.gguf](https://huggingface.co./tensorblock/Ryu-4x7B-MoE-bf16-GGUF/blob/main/Ryu-4x7B-MoE-bf16-Q8_0.gguf) | Q8_0 | 25.666 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/Ryu-4x7B-MoE-bf16-GGUF --include "Ryu-4x7B-MoE-bf16-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/Ryu-4x7B-MoE-bf16-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```